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Bayes Nonparametrics

Nonparametric statistical models are increasingly replacing
parametric models, to overcome the latter’s inflexibility to
address a wide variety of data.
A nonparametric model involves at least one
infinite-dimensional parameter (such as a function or
measure) and hence may also be referred to as an
“infinite-dimensional model”.
Keeping it aside to specify a prior distribution, the Bayesian
approach is extremely straightforward, in principle.
The full inference is based on the posterior distribution
only.
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Linear regression

Linear regression:

y = f (x)+ ε

f (x) = xT ·βββ ,

where x ∈ Rp and ε ∼ N(0,σ2).
Linear regression can capture non-linear shapes via basis
functions, i.e.,

f (x) = (φ1(x), . . . ,φN(x))T ·βββ .
Popular basis systems:

wavelets
trigonometric functions
polynomials
splines, etc.

Is this a nonparametric model?
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Bayesian linear regression

Model: y = Xβββ + εεε, where the design matrix X is n×p and
εεε ∼ N(0,σ2I).
Suppose the variance σ2 is known.
Prior: βββ ∼ N(0,Σp)

Then the posterior of βββ is

βββ |X,y ∼ N
(

β̄ββ ,A−1
)

A = σ
−2XTX+Σ

−1
p

β̄ββ = σ
−2A−1XTy =

(
XTX+σ

2
Σ
−1
p
)−1 XTy

Predictive density for the mean f (x∗) at a new location x∗ is

f (x∗)|x∗,X,y ∼ N
(

xT
∗ β̄ββ ,xT

∗A−1x∗
)

Predictive density for the response at a new location x∗ is

y∗|x∗,X,y ∼ N
(

xT
∗ β̄ββ ,xT

∗A−1x∗+σ
2
)

4 / 22



Nonparametric regression

Nonparametric regression: using infinitely many
parameters characterizing the regression function f (·)
evaluated at all possible predictor values x.

Weight space view
Restrict attention to a grid of x-values: x1,x2, ..,xn.
Put a joint prior on the n function values:
f (x1), f (x2), ..., f (xn).

Function space view
Treat f as an unknown function.
Put a prior over a set of functions.

Kolmogorov’s existence theorem for stochastic processes
equates the two views.

Just make sure that the set of finite-dimensional
distributions are consistent: symmetric to permutation and
marginalization.
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Gaussian process regression

Weight-space view. GP assumes f (x1)
...

f (xk)

∼ N (m,K)

But how do we specify the k× k covariance matrix K?

Cov(f (xp), f (xq))

An example of covariance function:

Cov(f (xp), f (xq)) = k(xp,xq) = σ
2
f exp

(
−1

2
(xp − xq)

2
)

Nearby x’s have highly correlated function ordinates f (x).
We can compute Cov(f (xp), f (xq)) for any xp and xq.
Extension to multiple covariates: (xp − xq) replaced by∥∥xp −xq

∥∥.
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Gaussian process regression, cont.

Definition
A Gaussian process (GP) is a stochastic process
W = (Wt : t ∈ T) indexed by an arbitrary set T such that the
vector (Wt1 , . . . ,Wtk) possesses a multivariate normal
distribution, for every t1, . . . , tk ∈ T and k ∈ N.

Therefore, a Gaussian process is a collection of random
variables, any finite number of which have a multivariate
Gaussian distribution.
A GP is a probability distribution of functions. No need for
a grid!
A GP is completely specified by a mean and a covariance
kernel

m(x) = E [f (x)]

k(x,x′) = E
[
(f (x)−m(x))

(
f (x′)−m(x′)

)]
for any two inputs x and x′.
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A Gaussian process is denoted by

f (x)∼ GP
(
m(x),k(x,x′)

)
The mean function m(·) is an arbitrary function from T to R.

It is often taken equal to zero as a prior; a shift to a nonzero
mean can also be incorporated in the model.

The covariance kernel is a bilinear, symmetric
nonnegative-definite function from T ×T to R.
There exists a Gaussian process for any mean function
and covariance kernel.
From a Bayesian point of view, f (x)∼ GP describes prior
beliefs about the unknown f (·).
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Example (squared exponential GP):

m(x) = 0, k(x,x′) = σ
2
f exp

(
−1

2

(
x− x′

ℓ

)2
)

Here ℓ > 0 is the length scale parameter controlling
smoothness.

Larger ℓ gives more smoothness in f (x).

σ2
f controls the magnitude.

Simulate draw from f (x)∼ GP(m(x),k(x,x′)) over a grid
x∗ = (x1, ...,xn) by using that

f (x∗)∼ N (m(x∗),K(x∗,x∗))

Note that the kernel k(x,x′) produces a covariance matrix
K(x∗,x∗) when evaluated at the vector x∗.
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Simulating a GP

The joint way: Choose a grid x1, ...,xk. Simulate the k-vector f (x1)
...

f (xk)

∼ N (m,K)

The conditional decomposition:

p(f (x1), f (x2), ...., f (xk)) = p(f (x1))p(f (x2)|f (x1)) · · ·
×p(f (xk)|f (x1), ..., f (xk−1))
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The posterior for a GPR

Model: yi = f (xi)+ εi, ε
iid∼ N(0,σ2)

Prior: f (x)∼ GP(0,k(x,x′)).
Data: x = (x1, ...,xn)

T and y = (y1, ...,yn)
T .

Goal: the posterior of f (·) over a grid of x-values: f∗ = f(x∗).
Intermediate step: joint distribution of y and f∗(

y
f∗

)
∼ N

{(
0
0

)
,

[
K(x,x)+σ2I K(x,x∗)

K(x∗,x) K(x∗,x∗)

]}
The posterior

f∗|x,y,x∗ ∼ N
(
f̄∗,cov(f∗)

)
f̄∗ = K(x∗,x)

[
K(x,x)+σ

2I
]−1 y

cov(f∗) = K(x∗,x∗)−K(x∗,x)
[
K(x,x)+σ

2I
]−1

K(x,x∗)

Computational complexity: O(n3) for matrix inversion. It
needs to be repeated at each MCMC step if we change
hyperparameters. Hence, the computation becomes
challenging for large n or large p. 11 / 22



Example - Canadian wages
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Posterior of f - ℓ= 0.2,0.5,1,2
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Prediction and Decision

Predicting a new set of y-values y∗ = f (x∗)+ ε is easy

y∗|x,y,x∗ ∼ N
(
f̄∗,cov(f∗)+σ

2I
)

Choosing a point prediction yguess by maximizing expected
utility

Ū (yguess|x∗) =
∫

U (y∗,yguess)p(y∗|x∗,y,x)dy∗

Have to make a decision a ∈ A whose consequences
(utility) depends on the uncertain f∗ (or y∗)? Just maximize
expected utility

Ū (a) =
∫

U (a, f∗)p(f∗|x∗,y,x)df∗

where U (a, f∗) is the utility of action a ∈ A if f∗ turns out to
be the “true state of the world”.
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Canadian wages - prediction with ℓ= 0.5
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Stationary processes and smoothness

A stochastic process (field) {f (x),x ∈ Rp} is weakly
stationary if E(f (x)) = µ and its covariance function k(x,x′)
is a function of t = x−x′

k(x,x′) = Cov
[
f (x), f (x′)

]
= k(t).

The covariance function is isotropic if it only depends on
the distance t = ∥x−x∥ (invariant to directions)

k(x,x′) = Cov
[
f (x), f (x′)

]
= k(t).

The smoothness of a stationary process is determined by
the smoothness of the covariance function.
A stationary (isotropic) process is continuous in
quadratic mean

E
(
|f (x+ t)− f (x)|2

)
→ 0 as t → 0

iff k(t) is continuous at t = 0.
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Commonly used covariance kernels

Let r = ∥x− x′∥. All kernels can be scaled by σf > 0.
Squared exponential (SE) (ℓ > 0)

KSE(r) = exp
(
− r2

2ℓ2

)
Infinitely mean square differentiable. Very smooth.

Matérn (ℓ > 0, ν > 0)

KMatern(r) =
21−ν

Γ(ν)

(√
2νr
ℓ

)ν

Kν

(√
2νr
ℓ

)

Here Γ(·) is the Gamma function, and Kν is the modified
Bessel function of the second kind.
As ν → ∞, Matérn’s kernel approaches SE kernel. Very
rough.
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Commonly used covariance kernels, cont.

γ-exponential (ℓ > 0, 0 < γ ≤ 2)

Kγ(r) = exp
[
−
(r
ℓ

)γ]
Mean square differentiable only when γ = 2 (SE).

Rational quadratic (ℓ > 0, α > 0)

KRQ(r) =
(

1+
r2

2αℓ2

)−α

Scale mixture of SE covariance functions with different
length scales.
KRQ(r) approaches the SE kernel as α → ∞.
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More on kernels

Anisotropic version of isotropic kernels by setting
r2(x,x′) = (x−x′)TM(x−x′) where M is positive definite.
Automatic Relevance Determination (ARD):
M = Diag(ℓ−2

1 , ..., ℓ−2
p ) is diagonal with different length

scales.
Factor kernels: M = ΛΛT +Ψ, where Λ is p×k for low rank
k.
Kernels are often combined into composite kernels. The
sum of kernels is a kernel. The product of kernels is a
kernel.
Kernels can be used for non-vectorial inputs by defining
distance functions between objects (e.g., words). String
kernels for text analysis. Fisher kernels.
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Hyperparameters

The kernel can depend on hyperparameters θ . Example:
SE kernel [θ = (σf , ℓ)

T ]

k(x,x′) = σ
2
f exp

(
−1

2
∥x−x′∥2

ℓ2

)

We have two strategies for unknown hyperparameters.
The first strategy proceeds with computing the posterior

p(θ |y,X) ∝ p(y|X,θ)p(θ |X).

We need to compute

p(y|X,θ) =
∫

p(y|X, f ,θ)p(f |X,θ)df

where f = f (X) is a vector with function values in the
training data.
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For Gaussian process regression, the marginal likelihood
of data is analytically available: [since
y|X,θ ∼ N(0,K +σ2I)]

logp(y|X,θ)=−1
2

yT (K +σ
2I
)−1 y− 1

2
log
∣∣K +σ

2I
∣∣− n

2
log(2π)

We may choose θ by maximizing logp(y|X,θ) (maximum
marginal likelihood estimate, or MMLE; sometimes it is
called Type-2 MLE).
The second strategy: A fully Bayesian approach would use
a prior on θ .
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Canadian wages - determination of ℓ
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