STAT 625 - Advanced Bayesian Inference Lecture 1

Meng Li

Department of Statistics

Bayes Nonparametrics

- Nonparametric statistical models are increasingly replacing parametric models, to overcome the latter's inflexibility to address a wide variety of data.
- A nonparametric model involves at least one infinite-dimensional parameter (such as a function or measure) and hence may also be referred to as an "infinite-dimensional model".
- Keeping it aside to specify a prior distribution, the Bayesian approach is extremely straightforward, in principle.
- The full inference is based on the posterior distribution only.

Linear regression

- Linear regression:

$$
\begin{gathered}
y=f(\boldsymbol{x})+\boldsymbol{\varepsilon} \\
f(\boldsymbol{x})=\boldsymbol{x}^{T} \cdot \boldsymbol{\beta}
\end{gathered}
$$

where $\boldsymbol{x} \in \mathbb{R}^{p}$ and $\varepsilon \sim N\left(0, \sigma^{2}\right)$.

- Linear regression can capture non-linear shapes via basis functions, i.e.,

$$
f(\boldsymbol{x})=\left(\phi_{1}(\boldsymbol{x}), \ldots, \phi_{N}(\boldsymbol{x})\right)^{T} \cdot \boldsymbol{\beta}
$$

- Popular basis systems:
- wavelets
- trigonometric functions
- polynomials
- splines, etc.
- Is this a nonparametric model?

Bayesian linear regression

- Model: $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where the design matrix \boldsymbol{X} is $n \times p$ and $\boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} \boldsymbol{I}\right)$.
- Suppose the variance σ^{2} is known.
- Prior: $\boldsymbol{\beta} \sim N\left(0, \Sigma_{p}\right)$
- Then the posterior of $\boldsymbol{\beta}$ is

$$
\begin{aligned}
\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y} & \sim N\left(\overline{\boldsymbol{\beta}}, \boldsymbol{A}^{-1}\right) \\
\boldsymbol{A} & =\sigma^{-2} \boldsymbol{X}^{T} \boldsymbol{X}+\Sigma_{p}^{-1} \\
\overline{\boldsymbol{\beta}} & =\sigma^{-2} \boldsymbol{A}^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\sigma^{2} \Sigma_{p}^{-1}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
\end{aligned}
$$

- Predictive density for the mean $f\left(x_{*}\right)$ at a new location x_{*} is

$$
f\left(\boldsymbol{x}_{*}\right) \mid \boldsymbol{x}_{*}, \boldsymbol{X}, \boldsymbol{y} \sim N\left(\boldsymbol{x}_{*}^{T} \overline{\boldsymbol{\beta}}, \boldsymbol{x}_{*}^{T} \boldsymbol{A}^{-1} \boldsymbol{x}_{*}\right)
$$

- Predictive density for the response at a new location x_{*} is

$$
\boldsymbol{y}_{*} \mid \boldsymbol{x}_{*}, \boldsymbol{X}, \boldsymbol{y} \sim N\left(\boldsymbol{x}_{*}^{T} \overline{\boldsymbol{\beta}}, \boldsymbol{x}_{*}^{T} \boldsymbol{A}^{-1} \boldsymbol{x}_{*}+\sigma^{2}\right)
$$

Nonparametric regression

- Nonparametric regression: using infinitely many parameters characterizing the regression function $f(\cdot)$ evaluated at all possible predictor values \boldsymbol{x}.
- Weight space view
- Restrict attention to a grid of x-values: $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, . ., \boldsymbol{x}_{n}$.
- Put a joint prior on the n function values: $f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{n}\right)$.
- Function space view
- Treat f as an unknown function.
- Put a prior over a set of functions.
- Kolmogorov's existence theorem for stochastic processes equates the two views.
- Just make sure that the set of finite-dimensional distributions are consistent: symmetric to permutation and marginalization.

Gaussian process regression

- Weight-space view. GP assumes

$$
\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{k}\right)
\end{array}\right) \sim N(\boldsymbol{m}, \boldsymbol{K})
$$

- But how do we specify the $k \times k$ covariance matrix K ?

$$
\operatorname{Cov}\left(f\left(x_{p}\right), f\left(x_{q}\right)\right)
$$

- An example of covariance function:

$$
\operatorname{Cov}\left(f\left(x_{p}\right), f\left(x_{q}\right)\right)=k\left(x_{p}, x_{q}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2}\left(x_{p}-x_{q}\right)^{2}\right)
$$

- Nearby x 's have highly correlated function ordinates $f(x)$.
- We can compute $\operatorname{Cov}\left(f\left(x_{p}\right), f\left(x_{q}\right)\right)$ for any x_{p} and x_{q}.
- Extension to multiple covariates: $\left(x_{p}-x_{q}\right)$ replaced by $\left\|x_{p}-x_{q}\right\|$.

Gaussian process regression, cont.

Definition

A Gaussian process (GP) is a stochastic process $W=\left(W_{t}: t \in T\right)$ indexed by an arbitrary set T such that the vector $\left(W_{t_{1}}, \ldots, W_{t_{k}}\right)$ possesses a multivariate normal distribution, for every $t_{1}, \ldots, t_{k} \in T$ and $k \in \mathbb{N}$.

- Therefore, a Gaussian process is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.
- A GP is a probability distribution of functions. No need for a grid!
- A GP is completely specified by a mean and a covariance kernel

$$
\begin{gathered}
m(x)=\mathrm{E}[f(x)] \\
k\left(x, x^{\prime}\right)=E\left[(f(x)-m(x))\left(f\left(x^{\prime}\right)-m\left(x^{\prime}\right)\right)\right]
\end{gathered}
$$

for any two inputs x and x^{\prime}.

- A Gaussian process is denoted by

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right)
$$

- The mean function $m(\cdot)$ is an arbitrary function from T to \mathbb{R}.
- It is often taken equal to zero as a prior; a shift to a nonzero mean can also be incorporated in the model.
- The covariance kernel is a bilinear, symmetric nonnegative-definite function from $T \times T$ to \mathbb{R}.
- There exists a Gaussian process for any mean function and covariance kernel.
- From a Bayesian point of view, $f(x) \sim G P$ describes prior beliefs about the unknown $f(\cdot)$.
- Example (squared exponential GP):

$$
m(x)=0, \quad k\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2}\left(\frac{x-x^{\prime}}{\ell}\right)^{2}\right)
$$

- Here $\ell>0$ is the length scale parameter controlling smoothness.
- Larger ℓ gives more smoothness in $f(x)$.
- σ_{f}^{2} controls the magnitude.
- Simulate draw from $f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right)$ over a grid $\boldsymbol{x}_{*}=\left(x_{1}, \ldots, x_{n}\right)$ by using that

$$
f\left(\boldsymbol{x}_{*}\right) \sim N\left(m\left(\boldsymbol{x}_{*}\right), K\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}\right)\right)
$$

- Note that the kernel $k\left(x, x^{\prime}\right)$ produces a covariance matrix $K\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}\right)$ when evaluated at the vector \boldsymbol{x}_{*}.

Simulating a GP

- The joint way: Choose a grid x_{1}, \ldots, x_{k}. Simulate the k-vector

$$
\left(\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{k}\right)
\end{array}\right) \sim N(\boldsymbol{m}, \boldsymbol{K})
$$

- The conditional decomposition:

$$
\begin{aligned}
p\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{k}\right)\right) & =p\left(f\left(x_{1}\right)\right) p\left(f\left(x_{2}\right) \mid f\left(x_{1}\right)\right) \cdots \\
& \times p\left(f\left(x_{k}\right) \mid f\left(x_{1}\right), \ldots, f\left(x_{k-1}\right)\right)
\end{aligned}
$$

- Model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad \varepsilon \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$
- Prior: $f(x) \sim G P\left(0, k\left(x, x^{\prime}\right)\right)$.
- Data: $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$.
- Goal: the posterior of $f(\cdot)$ over a grid of x-values: $\boldsymbol{f}_{*}=\boldsymbol{f}\left(\boldsymbol{x}_{*}\right)$.
- Intermediate step: joint distribution of \boldsymbol{y} and \boldsymbol{f}_{*}

$$
\binom{\boldsymbol{y}}{\boldsymbol{f}_{*}} \sim N\left\{\binom{0}{0},\left[\begin{array}{cc}
K(\boldsymbol{x}, \boldsymbol{x})+\sigma^{2} I & K\left(\boldsymbol{x}, \boldsymbol{x}_{*}\right) \\
K\left(\boldsymbol{x}_{*}, \boldsymbol{x}\right) & K\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}\right)
\end{array}\right]\right\}
$$

- The posterior

$$
\begin{gathered}
\boldsymbol{f}_{*} \mid \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}_{*} \sim N\left(\overline{\boldsymbol{f}}_{*}, \operatorname{cov}\left(\boldsymbol{f}_{*}\right)\right) \\
\overline{\boldsymbol{f}}_{*}=K\left(\boldsymbol{x}_{*}, \boldsymbol{x}\right)\left[K(\boldsymbol{x}, \boldsymbol{x})+\sigma^{2} I\right]^{-1} \boldsymbol{y} \\
\operatorname{cov}\left(\boldsymbol{f}_{*}\right)=K\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}\right)-K\left(\boldsymbol{x}_{*}, \boldsymbol{x}\right)\left[K(\boldsymbol{x}, \boldsymbol{x})+\sigma^{2} I\right]^{-1} K\left(\boldsymbol{x}, \boldsymbol{x}_{*}\right)
\end{gathered}
$$

- Computational complexity: $O\left(n^{3}\right)$ for matrix inversion. It needs to be repeated at each MCMC step if we change hyperparameters. Hence, the computation becomes challenging for large n or large p.

Example - Canadian wages

Posterior of $\mathrm{f}-\ell=0.2,0.5,1,2$

- Predicting a new set of y -values $\boldsymbol{y}_{*}=f\left(\boldsymbol{x}_{*}\right)+\varepsilon$ is easy

$$
\boldsymbol{y}_{*} \mid \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}_{*} \sim N\left(\overline{\boldsymbol{f}}_{*}, \operatorname{cov}\left(\boldsymbol{f}_{*}\right)+\sigma^{2} I\right)
$$

- Choosing a point prediction $\boldsymbol{y}_{\text {guess }}$ by maximizing expected utility

$$
\overline{\mathscr{U}}\left(\boldsymbol{y}_{\text {guess }} \mid \boldsymbol{x}_{*}\right)=\int \mathscr{U}\left(\boldsymbol{y}_{*}, \boldsymbol{y}_{\text {guess }}\right) p\left(\boldsymbol{y}_{*} \mid \boldsymbol{x}_{*}, \boldsymbol{y}, \boldsymbol{x}\right) d \boldsymbol{y}_{*}
$$

- Have to make a decision $a \in \mathscr{A}$ whose consequences (utility) depends on the uncertain \boldsymbol{f}_{*} (or \boldsymbol{y}_{*}) ? Just maximize expected utility

$$
\overline{\mathscr{U}}(a)=\int \mathscr{U}\left(a, \boldsymbol{f}_{*}\right) p\left(\boldsymbol{f}_{*} \mid \boldsymbol{x}_{*}, \boldsymbol{y}, \boldsymbol{x}\right) d \boldsymbol{f}_{*}
$$

where $\mathscr{U}\left(a, \boldsymbol{f}_{*}\right)$ is the utility of action $a \in \mathscr{A}$ if \boldsymbol{f}_{*} turns out to be the "true state of the world".

Canadian wages - prediction with $\ell=0.5$

Stationary processes and smoothness

- A stochastic process (field) $\left\{f(\boldsymbol{x}), x \in \mathbb{R}^{p}\right\}$ is weakly stationary if $E(f(\boldsymbol{x}))=\mu$ and its covariance function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is a function of $\boldsymbol{t}=\boldsymbol{x}-\boldsymbol{x}^{\prime}$

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\operatorname{Cov}\left[f(\boldsymbol{x}), f\left(\boldsymbol{x}^{\prime}\right)\right]=k(\boldsymbol{t}) .
$$

- The covariance function is isotropic if it only depends on the distance $t=\|\boldsymbol{x}-\boldsymbol{x}\|$ (invariant to directions)

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\operatorname{Cov}\left[f(\boldsymbol{x}), f\left(\boldsymbol{x}^{\prime}\right)\right]=k(t)
$$

- The smoothness of a stationary process is determined by the smoothness of the covariance function.
- A stationary (isotropic) process is continuous in quadratic mean

$$
E\left(|f(\boldsymbol{x}+t)-f(\boldsymbol{x})|^{2}\right) \rightarrow 0 \text { as } t \rightarrow 0
$$

iff $k(t)$ is continuous at $t=0$.

Commonly used covariance kernels

- Let $r=\left\|x-x^{\prime}\right\|$. All kernels can be scaled by $\sigma_{f}>0$.
- Squared exponential (SE) $(\ell>0)$

$$
K_{S E}(r)=\exp \left(-\frac{r^{2}}{2 \ell^{2}}\right)
$$

- Infinitely mean square differentiable. Very smooth.
- Matérn $(\ell>0, v>0)$

$$
K_{\text {Matern }}(r)=\frac{2^{1-v}}{\Gamma(v)}\left(\frac{\sqrt{2 v r}}{\ell}\right)^{v} K_{v}\left(\frac{\sqrt{2 v r}}{\ell}\right)
$$

- Here $\Gamma(\cdot)$ is the Gamma function, and K_{v} is the modified Bessel function of the second kind.
- As $v \rightarrow \infty$, Matérn's kernel approaches SE kernel. Very rough.

Commonly used covariance kernels, cont.

- γ-exponential $(\ell>0,0<\gamma \leq 2)$

$$
K_{\gamma}(r)=\exp \left[-\left(\frac{r}{\ell}\right)^{\gamma}\right]
$$

- Mean square differentiable only when $\gamma=2$ (SE).
- Rational quadratic $(\ell>0, \alpha>0)$

$$
K_{R Q}(r)=\left(1+\frac{r^{2}}{2 \alpha \ell^{2}}\right)^{-\alpha}
$$

- Scale mixture of SE covariance functions with different length scales.
- $K_{R Q}(r)$ approaches the SE kernel as $\alpha \rightarrow \infty$.

More on kernels

- Anisotropic version of isotropic kernels by setting $r^{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)^{T} \boldsymbol{M}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ where \boldsymbol{M} is positive definite.
- Automatic Relevance Determination (ARD): $\boldsymbol{M}=\operatorname{Diag}\left(\ell_{1}^{-2}, \ldots, \ell_{p}^{-2}\right)$ is diagonal with different length scales.
- Factor kernels: $M=\Lambda \Lambda^{T}+\Psi$, where Λ is $p \times k$ for low rank k.
- Kernels are often combined into composite kernels. The sum of kernels is a kernel. The product of kernels is a kernel.
- Kernels can be used for non-vectorial inputs by defining distance functions between objects (e.g., words). String kernels for text analysis. Fisher kernels.
- The kernel can depend on hyperparameters θ. Example: SE kernel $\left[\theta=\left(\sigma_{f}, \ell\right)^{T}\right]$

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2} \frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}}{\ell^{2}}\right)
$$

- We have two strategies for unknown hyperparameters.
- The first strategy proceeds with computing the posterior

$$
p(\theta \mid \boldsymbol{y}, \boldsymbol{X}) \propto p(\boldsymbol{y} \mid \boldsymbol{X}, \theta) p(\theta \mid \boldsymbol{X}) .
$$

- We need to compute

$$
p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta})=\int p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{f}, \boldsymbol{\theta}) p(\boldsymbol{f} \mid \boldsymbol{X}, \boldsymbol{\theta}) d \boldsymbol{f}
$$

where $\boldsymbol{f}=f(\boldsymbol{X})$ is a vector with function values in the training data.

- For Gaussian process regression, the marginal likelihood of data is analytically available: [since $\left.\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta} \sim N\left(0, K+\sigma^{2} I\right)\right]$

$$
\log p(\boldsymbol{y} \mid \boldsymbol{X}, \theta)=-\frac{1}{2} \boldsymbol{y}^{T}\left(K+\sigma^{2} I\right)^{-1} \boldsymbol{y}-\frac{1}{2} \log \left|K+\sigma^{2} I\right|-\frac{n}{2} \log (2 \pi)
$$

- We may choose θ by maximizing $\log p(\boldsymbol{y} \mid \boldsymbol{X}, \theta)$ (maximum marginal likelihood estimate, or MMLE; sometimes it is called Type-2 MLE).
- The second strategy: A fully Bayesian approach would use a prior on θ.

Canadian wages - determination of ℓ

