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Bayes Nonparametrics

o Nonparametric statistical models are increasingly replacing
parametric models, to overcome the latter’s inflexibility to
address a wide variety of data.

@ A nonparametric model involves at least one
infinite-dimensional parameter (such as a function or
measure) and hence may also be referred to as an
“infinite-dimensional model”.

o Keeping it aside to specify a prior distribution, the Bayesian
approach is extremely straightforward, in principle.

o The full inference is based on the posterior distribution
only.
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Linear regression

o Linear regression:

y=f(x)+e
flx)=x"-B,

where x € R? and € ~ N(0,0?).
o Linear regression can capture non-linear shapes via basis
functions, i.e.,
Qo
fx)=(91(x),....on(x)"-B.
o Popular basis systems:

o wavelets

o trigonometric functions
o polynomials

o splines, etc.

o Is this a nonparametric model?
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Bayesian linear regression

o Model: y = XB + €, where the design matrix X is n x p and
€~ N(0,070).

o Suppose the variance ¢? is known.

@ Prior: B ~N(0,%,)

o Then the posterior of B is

BIXy~N(BAa™)
A=0X"Xx+3,!
B=0c24"XxTy= (XTx+622;1)_1XTy
o Predictive density for the mean f(x,) at a new location x. is
fle ke, Xy~ N (¥ B.xTA"x, )
o Predictive density for the response at a new location x, is
Ye|x, X,y ~N (xfB,fo_lx* + 62)
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Nonparametric regression

o Nonparametric regression: using infinitely many
parameters characterizing the regression function f(-)
evaluated at all possible predictor values x.

o Weight space view

o Restrict attention to a grid of x-values: x,x,..,x,.
o Put a joint prior on the n function values:

f(xl),f(xZ); "'7f(x")'

o Function space view
o Treat f as an unknown function.
o Put a prior over a set of functions.
@ Kolmogorov’s existence theorem for stochastic processes
equates the two views.

o Just make sure that the set of finite-dimensional
distributions are consistent: symmetric to permutation and
marginalization.
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Gaussian process regression

o Weight-space view. GP assumes
f(x1)
: ~ N (m,K)

f ()

o But how do we specify the k x k covariance matrix K?

Cov (f(xp).f (xq))

©

An example of covariance function:

Cov (f(xp).f(xg)) = k(xp,xq) = szexp (—; (x _xq)Z)

©

Nearby x’s have highly correlated function ordinates f(x).
We can compute Cov (f(x,),f(x4)) for any x, and x,.
Extension to multiple covariates: (x, —x,) replaced by

ey =4I

© ©
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Gaussian process regression, cont.

Definition

A Gaussian process (GP) is a stochastic process

W = (W,:t€T) indexed by an arbitrary set T such that the
vector (W,,,...,W,,) possesses a multivariate normal
distribution, for every #;,..., € T and k € N.

o Therefore, a Gaussian process is a collection of random
variables, any finite number of which have a multivariate
Gaussian distribution.

o A GP is a probability distribution of functions. No need for
a grid!

o A GP is completely specified by a mean and a covariance
kernel

m(x ) [f(x)}
k(x,x') =E [(f [ (f )]

for any two inputs x and x'.
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A Gaussian process is denoted by
f(x) ~ GP (m(x),k(x,x"))
The mean function m(-) is an arbitrary function from T to R.

o It is often taken equal to zero as a prior; a shift to a nonzero

mean can also be incorporated in the model.
The covariance kernel is a bilinear, symmetric
nonnegative-definite function from 7' x T to R.
There exists a Gaussian process for any mean function
and covariance kernel.
From a Bayesian point of view, f(x) ~ GP describes prior
beliefs about the unknown £ ().
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o Example (squared exponential GP):

mx)=0,  k(x,x')=ofexp <_; <X_KX/>2>

o Here ¢ > 0 is the length scale parameter controlling
smoothness.

o Larger ¢ gives more smoothness in f(x).
° 6f2 controls the magnitude.

o Simulate draw from f(x) ~ GP (m(x),k(x,x’)) over a grid
X, = (x1,...,x,) by using that

flee) ~ N (mlx.), K(x.,x.))

@ Note that the kernel k(x,x") produces a covariance matrix
K(x,,x.) when evaluated at the vector x..
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Simulating a GP

@ The joint way: Choose a grid xy, ...,x;. Simulate the k-vector

fxr)
: ~ N (m,K)
S ()
o The conditional decomposition:

P(f(x1)f (x2),ooif () = p (F(21)) P (F (x2)If (x1)) -
Xp (FO)lf (1), ooof (xi-1))
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The posterior for a GPR

© © 06 0 ©

Model: y;, = f(x;) + &;, E%N(O c?)

Prior: f(x) ~ GP(0,k(x,x")).

Data: x = (x1,...,x,)" andy = (y1,...,yn)" "

Goal: the posterior of f(-) over a grid of x-values: f. = f(x.).
Intermediate step: joint distribution of y and £,

y N 0 K(x,x)+0%l K(x,x,)
)0 [ e )
The posterior
Sy, x. ~N _*aCOV(f*))

fi=K(x.,x )[K(x,x)—i—ozl]fly
cov(f.) = K(xs,x.) — K(x.,x) [K(x,x) +621]71K(x x.)

Computational complexity: O(n?) for matrix inversion. It
needs to be repeated at each MCMC step if we change
hyperparameters. Hence, the computation becomes

challenging for large n or large p. /22



Example - Canadian wages

Canadian wages
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Posterior of f - £ =0.2,0.5,1,2

Canadian wages - 95% intervals for f(x)

Canadian wages - 95% intervals for f(x)
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Prediction and Decision

o Predicting a new set of y-values y. = f(x.) + € is easy
y|x,y,x. ~ N (fe,cov(f.) + 621)

o Choosing a point prediction y,,.,, by maximizing expected
utility

qz(y(guess‘x*) :/%(y*yyguess)p(y*‘xmy;x)dy*

o Have to make a decision a € &7 whose consequences
(utility) depends on the uncertain f, (or y.)? Just maximize
expected utility

7@ = [ %(afoplf.l.y0d.
where % (a,f.) is the utility of action a € &7 if f, turns out to

be the “true state of the world”.
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Canadian wages - prediction with £ =0.5
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Stationary processes and smoothness

o A stochastic process (field) {f(x),x € R”} is weakly
stationary if E(f(x)) = u and its covariance function k(x,x’)
is a function of r =x —x’

k(x,x") = Cov [f(x),f(x")] = k(#).

o The covariance function is isotropic if it only depends on
the distance ¢ = ||x —x|| (invariant to directions)

k(x,x") = Cov [f(x),f(x")] = k(2).

o The smoothness of a stationary process is determined by
the smoothness of the covariance function.

o A stationary (isotropic) process is continuous in
quadratic mean

E([f(x—H) —f(x)\z) 0as’—0

iff k(¢) is continuous at = 0.
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Commonly used covariance kernels

o Let r=|x—x/||. All kernels can be scaled by oy > 0.
o Squared exponential (SE) (¢ > 0)

2
Ksg(r) =exp —3p

o Infinitely mean square differentiable. Very smooth.
o Matérn (¢ >0, v > 0)

KMatern(r) =

2 (vave\' (Vv
r(v)\ ¢ Y\ v

o Here I'(+) is the Gamma function, and K, is the modified
Bessel function of the second kind.

o As v — oo, Matérn’s kernel approaches SE kernel. Very
rough.
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Commonly used covariance kernels, cont.

o y-exponential (¢>0,0<y<2)

s=sol-()]

o Mean square differentiable only when y=2 (SE).
o Rational quadratic (¢ > 0, o > 0)

2\
KRQ(}") = <1 + M)

o Scale mixture of SE covariance functions with different
length scales.
o Kgg(r) approaches the SE kernel as ot — co.
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More on kernels

o Anisotropic version of isotropic kernels by setting
r(x,x") = (x —x')TM(x — x') where M is positive definite.

o Automatic Relevance Determination (ARD):
M = Diag(él‘z, ...,5172) is diagonal with different length
scales.

o Factor kernels: M = AAT + ¥, where A is p x k for low rank
k.

o Kernels are often combined into composite kernels. The
sum of kernels is a kernel. The product of kernels is a
kernel.

o Kernels can be used for non-vectorial inputs by defining
distance functions between objects (e.g., words). String
kernels for text analysis. Fisher kernels.
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Hyperparameters

@ The kernel can depend on hyperparameters 6. Example:
SE kernel [6 = (o7,0)7]

o) — oo [ L IE=1
(x,x)—GfeXp —ET
o We have two strategies for unknown hyperparameters.
o The first strategy proceeds with computing the posterior
p(6ly, X) o< p(y|X,0)p(6]X).
o We need to compute
PIX.0) = [ pOIXS.0)p(UIX.0)df
where f = f(X) is a vector with function values in the

training data.
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o For Gaussian process regression, the marginal likelihood
of data is analytically available: [since
¥IX,0 ~N(0.K+01)]

1 -1 1 n
logp(y|X,0) = —EJ’T (K+0°1) y—ilog K+ 071 —Elog(27r)

@ We may choose 6 by maximizing logp(y|X,0) (maximum
marginal likelihood estimate, or MMLE; sometimes it is
called Type-2 MLE).

o The second strategy: A fully Bayesian approach would use
a prior on 6.
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Canadian wages - determination of /

sigmaf =10 sigmaf =10
300 300
260 280
260 260

s s

S S
220 220

o 5 10 15 0 35 40 45 50 o 05 1 1 5 4 a5 s

22/22



