
STAT 625: Homework 1

Instruction: Submit a PDF report (scanned handwriting allowed) and a separate executable �le
for your code to Canvas. Part of this assignment is to implement Gaussian processes on real data,
and the idea is to let you write your own code from scratch. This implies that you should not use
existing GP toolboxes, although feel free to use packages/libraries for linear algebra, random number
generators, commonly used distributions, etc. Collaborations among peers are always welcomed, but
you need to write down your submission on your own.

Let f ∼ GP (0, k(x, x′)) where k(x, x′) is the squared exponential kernel
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1. Simulate and plot 5 realizations from the prior distribution of f over a grid of x's at each
combination of (σf , `) ∈ {(1/2, 2), (1/4, 1/2), (1/2, 1/2)}.

2. Analyze the Canadian wages data using a Gaussian process for logWage ∼ Age. First standardarize
the Age variable to have zero mean and unit variance. For each method below to address the
parameters (σ, σf , `), a common task is to report one single plot consisting of the posterior
mean of f , 95% pointwise credible intervals, and 95% predictive intervals for new observations
(all as a function of x ranging from −2 to 2.5).

Recall that the marginal likelihood is
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(a) Empirical speci�cation of (σ, σf , `). Obtain your favorite nonparametric estimate of f
and use residuals to estimate the model parameter σ, denoted by σ̂. Then use subjective
choices of σf = 10 and ` = 0.5.

(b) Empirical Bayes. Use the prior π(σ2) ∝ σ−2 for σ2, and reparameterize σ2f = τ2σ2.

First obtain the marginal likelihood of (τ, `) by integrating out σ2 with respect to its
prior distribution, which has a closed form expression. Then choose parameters (τ, `) by
maximizing the marginal likelihood.

(c) Fully Bayes. Use the prior π(σ2) ∝ σ−2 for σ2, and use your favorite priors for σf and `.
DrawM posterior samples of (σ, σf , `); M could be 1,000 or more, depending on whether
the posterior samples mix well diagnosed visually from the trace plot. Plot the marginal
posterior distributions of (log σ, log σf , log `).

[Hint 1: Note that you only have three parameters and you can use any method you are
comfortable with for the posterior calculation (for example, you may refer to the book
Bayesian Data Analysis Chapter 10�13, particularly the slice sampling by Radford M.
Neal with R code provided by this webpage).

Hint 2: Conditional on each sample of (σ, σf , `), you can obtain a sample of f(·) and
predictive curve y(·). Aggregating all M posterior samples will give you the posterior
mean and pointwise credible/predictive intervals. ]
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http://www.cs.toronto.edu/~radford/slice.software.html


(d) Comment on the three approaches above in terms of computational complexity, posterior
inference, and other high level perspectives.

3. Design a small simulation to demonstrate that your code can accurately estimate the ground
truth by using empirical Bayes and fully Bayes approaches. In particular, �rst specify the true
parameter values (σ20, f0) and three sample sizes that correspond to small, moderate, and large
sample. Then generate data and run your code on simulated data. Summarize your �ndings
using plots as in Problem 2 and a table as follows:

n L2 error of f̂ using empirical Bayes L2 error of f̂ using fully Bayes

small
moderate
large

Here the Bayes estimator f̂ is the posterior mean.
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