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Summary. We study the asymptotic behaviour of the posterior distribution in a mixture model
when the number of components in the mixture is larger than the true number of components:
a situation which is commonly referred to as an overfitted mixture. We prove in particular that
quite generally the posterior distribution has a stable and interesting behaviour, since it tends
to empty the extra components. This stability is achieved under some restriction on the prior,
which can be used as a guideline for choosing the prior. Some simulations are presented to
illustrate this behaviour.
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1. Introduction

Finite mixture models provide a very flexible and often biologically or physically interpretable
model for describing complex distributions (Marin and Robert, 2007; Frühwirth-Schnatter,
2006; MacLachlan and Peel, 2000; Titterington et al., 1985). An important concomitant problem
of choosing the appropriate number of components in a mixture distribution has entertained
and concerned a large number of researchers and attracted a correspondingly large litera-
ture (Akaike, 1973; Dempster et al., 1977; Lee et al., 2008; McGrory and Titterington, 2007;
Richardson and Green, 1997; Robert and Wraith, 2009; Schwarz, 1978). When the number of
components is unknown, the analyst can intentionally or unintentionally propose an overfit-
ting model, i.e. one with more components than can be supported by the data. The problem of
non-identifiability in estimation of overfitted mixture models is well known; in her review of this
problem, for example, Frühwirth-Schnatter (2006) observed that identifiability will be violated
as either one of the component weights is 0 or two of the component parameters are equal.
Examples of this behaviour were provided and possible solutions presented, including choosing
priors that bound the posterior away from the unidentifiability sets or that induce shrinkage for
elements of the component parameters, although the opportunity to reduce the mixture model
to the true model is forfeited by this practice.

In this paper, we contribute to this growing understanding of how overfitted mixtures behave
in Bayesian analysis, particularly as the dimension of the component parameters grows. Consider
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a mixture model of the form

fθ.x/=
k∑

j=1
pj gγj .x/, k �1, γj ∈Γ, θ= .p1, . . . , pk,γ1, . . . ,γk/∈Θk, Γ⊂Rd: .1/

The number of components k can be known or unknown. Estimating k can be difficult in
practice and often one prefers to choose a large k, with the risk that the true distribution has
fewer components. However, the non-identifiability of the parameter in cases where the true
distribution has a smaller number of components leads to the following question: how can we
interpret the posterior distribution in such cases? To answer such a question we investigate the
asymptotic behaviour of the posterior distribution.

More precisely, assume that we have observations X1, . . . , Xn, independent identically dis-
tributed from a mixture model with k0 components:

f0.x/=
k0∑

j=1
p0

j gγ0
j
.x/, k �1, γ0

j ∈Γ, 1�k0 <k: .2/

In such cases the model is non-identifiable since all values of the parameter in the form

θ= .p0
1, . . . , p0

k0
, 0,γ0

1 , . . . ,γ0
k0

,γ/,

for all γ∈Γ, and all values of the parameter in the form θ= .p0
1, :, pj::, p0

k0
, pk+1,γ0

1 , . . . ,γ0
k0

,γ0
j /

with pj + pk+1 = p0
j satisfy f0 = fθ. This non-identifiability is much stronger than the non-

identifiability corresponding to permutations of the labels in the mixture representation. In such
cases, it is well known that the asymptotic behaviour of the likelihood is not regular, although
under mild conditions the maximum likelihood converges to the set of values in Θk satisfying
fθ = f0; see Feng and McCulloch (1996). In such cases where the true parameter lies on the
boundary of the parameter set, the multiplicity of the limiting set implies that the maximum
likelihood estimator does not have stable asymptotic behaviour. When fθ is the main object of
interest this is not of great importance; however, in many situations recovering θ is of major
interest. A particular example in which such estimates are particularly useful is time evolving
mixture models, where the estimation of the number of components at each time period would
be too time consuming to do. In such cases, using quite a large number of components, which
can be regarded as a reasonable upper bound on the number of components over the different
time periods, is computationally easier. It thus becomes crucial to know that the posterior
distribution under overfitted mixtures gives interpretable results.

In this paper we study the asymptotic behaviour of the posterior distribution, inducing some
results on the asymptotic behaviour of Bayesian estimates such as the posterior mean. It turns
out that the posterior distribution has much more stable behaviour than the maximum
likelihood estimator if the prior on the weights is reasonable. In particular we prove that, if
the dimension d of γ is larger than some value depending on the prior, then asymptotically the
extra components in the k-mixture are emptied under the posterior distribution. This result is of
interest in particular because it validates the use of Bayesian estimation in mixture models with
too many components. It is also of interest since it is one of the few examples where the prior
can have an effect asymptotically, even to first order (consistency), and where choosing a less
informative prior leads to better results. It is to be noted that the usual less informative priors are
designed to favour weights close to 0, so that in the present framework they actually bring the
correct information, as opposed to more informative priors which would prevent the weights
from becoming small. It also shows that the penalization effect of integrating out the parameter,
as considered in the Bayesian framework, is not only useful in model choice or testing contexts
but also in estimation contexts.



Overfitted Mixture Models 691

In Section 2 we state our main result, where we link conditions on the prior to the asymptotic
behaviour of the posterior distribution. A simulation study is presented in Section 3 where we
illustrate our theoretical results and also consider a case for which no theoretical asymptotic
results have been obtained.

2. Consistency issues: main results

In this section we state the main results of the paper, namely that the posterior distribution
concentrates on the subset of parameters for which fθ = f0 so that k − k0 components have
weight 0. The reason for this stable behaviour as opposed to the unstable behaviour of the
maximum likelihood estimator is that integrating out the parameter acts as a penalization: the
posterior is essentially putting mass on the sparsest way to approximate the true density.

We first give some notation and state the assumptions that are needed to describe the asymp-
totic behaviour of the posterior distribution.

2.1. Assumptions and notation
We denote Θ0

k ={θ∈Θk; fθ =f0} and let ln.θ/ be the log-likelihood calculated at θ. Denote by
||f −g||=∫ |f −g|.x/dx the L1-distance and

Pn.g/=
n∑

i=1
g.Xi/=n

and

Gn.g/={Pn.g/−F0.g/}√
n

where F0.g/= ∫ f0.x/g.x/dx and denote by Leb.A/ the Lebesgue measure of a set A. We also
use the symbol a∧b to designate min.a, b/. For any set A, denote by Ac the complement of A.

Let ∇gγ be the vector of first derivatives of gγ with respect to γ, and D2gγ be the matrix of
second derivatives with respect to γ. Define for δ�0

ḡγ = sup
|γ′−γ|�δ

.gγ′/,

g
γ
= inf

|γ′−γ|�δ
.gγ′/:

We now introduce some notation that is useful to characterize Θ0
k, following Liu and Shao’s

(2004) presentation. Let t = .ti/
k0
i=0 with 0= t0 <t1 < . . .<tk0 �k be a partition of {1, . . . , k}. For

all θ∈Θk such that fθ =f0 there exists t as defined above such that, up to a permutation of the
labels,

∀i=1, . . . , k0,γti−1+1 = . . . =γti =γ0
i , p.i/=

ti∑
j=ti−1+1

pj =p0
i , ptk0+1 = . . . =pk =0:

In other words Ii = {ti−1 + 1, . . . , ti} represents the cluster of components in {1, . . . , k} having
the same parameter as γ0

i . Then define the following parameterization of θ∈Θk (up to a per-
mutation)

φt = ..γj/
tk0
j=1, .si/

k0−1
i=1 , .pj/k

j=tk0+1
/∈Rdtk0+k0+k−tk0−1, si =p.i/−p0

i , i=1, . . . , k0,

and

ψt = ..qj/
tk0
j=1,γtk0+1, . . . ,γk/, qj =pj=p.i/, when j ∈ Ii ={ti−1 +1, . . . , ti}:
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Note that f0 corresponds to

φ0
t = .γ0

1 , . . . ,γ0
1 ,γ0

2 , . . . ,γ0
2 , . . . ,γ0

k0
, . . . ,γ0

k0
, 0 . . .0 . . .0/

where γ0
i is repeated ti − ti−1 times in the above vector, for any ψt.

Then we parameterize θ as .φt,ψt/, so that fθ =f.φt, ψt/, and we denote f ′
.φ0

t , ψt/ and f ′′
.φ0

t , ψt/

the first and second derivatives of f.φt, ψt/ with respect to φt and computed at θ0 = .φ0
t ,ψt/.

We also denote by Pπ.·|Xn/ the posterior distribution, where Xn = .X1, . . . , Xn/.

Assumption 1. L1-consistency: there exists δn � log.n/q=
√

n, for some q�0 such that

lim
M→∞

lim sup
n

[En
0{Pπ.||f0 −fθ||�Mδn|Xn/}]=0:

Assumption 2. Regularity: the model γ ∈Γ→ gγ is three times differentiable and regular in
the sense that for all γ ∈Γ the Fisher information matrix that is associated with the model gγ is
positive definite at γ. Denote by D.3/gγ the array whose components are

@3gγ

@γi1 @γi2 @γi3

:

For all i�k0, there exists δ> 0 such that

F0

(
ḡ3
γ0

i

g3
γ0

i

)
<∞, F0

⎧⎨
⎩

sup|γ−γ0
i |�δ.|∇gγ |3/

g3
γ0

i

⎫⎬
⎭<∞, F0

( |∇gγ0
i
|4

f 4
0

)
<∞,

F0

⎧⎨
⎩

sup|γ−γ0
i |�δ.|D2gγ |2/

g2
γ0

i

⎫⎬
⎭<∞, F0

⎛
⎝ sup|γ−γ0

i |�δ |D3gγ |
g
γ0

i

⎞
⎠<∞:

Assume also that for all i=1, . . . , k0 γ
0
i ∈ int.Γ/ the interior of Γ.

Assumption 3. Integrability: there exists Γ0 ⊂Γ satisfying Leb.Γ0/> 0 and, for all i�k0,

d.γ0
i , Γ0/= inf

γ∈Γ0
|γ−γ0

i |> 0

and such that, for all γ ∈Γ0,

F0

(
g4
γ

f 4
0

)
<∞, F0

(
g3
γ

g3
γ0

i

)
<∞, ∀i�k0:

Assumption 4. Stronger identifiability: for all t partitions of {1, . . . , k} as defined above, let
θ∈Θk and write θ as .φt,ψt/; then

.φt −φ0
t /Tf ′

φ0
t ,ψt

+ 1
2 .φt −φ0

t /Tf ′′
φ0

t , ψt
.φt −φ0

t /=0⇔
∀i�k0, si =0 and ∀j ∈ Ii qj.γj −γ0

i /=0, ∀i� tk0 +1 pi =0: .3/

Assuming also that if γ =∈ {γ1, . . . ,γk} then for all functions hγ which are linear combinations
of derivatives of gγ of order less than or equal to 2 with respect to γ, and all functions h1 which
are also linear combinations of derivatives of the gγj s j = 1, . . . , k and its derivatives of order
less than or equal to 2, then αhγ +βh1 =0 if and only if αhγ =βh1 =0.
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Extension to non-compact cases: if Γ is not compact then we also assume that for all sequences
γn converging to a point in @Γ the frontier of Γ, considered as a subset of .R∪{−∞, ∞}/d , gγn

converges pointwise either to a degenerate function, i.e. satisfying
∫
g.x/ dμ.x/∈ {∞, 0} or to

a proper density g such that g is linearly independent of any non-null combinations of g0
γi

, ∇g0
γi

and D2g0
γi

, i=1, . . . , k0.

Assumption 5. Prior: the prior density, with respect to Lebesgue measure on Θ, is continuous
and positive and the prior π.p/ on .p1, . . . , pk/ satisfies

π.p/=C.p/p
α1−1
1 . . . p

αk−1
k

where C.p/ is a continuous function on the simplex bounded from above and from below by
positive constants.

These assumptions are weaker versions of the kind of assumptions that can be found in the
literature on asymptotic properties of mixture models. Assumption 1 is quite mild and there
are quite a few results in the literature proving such a consistency of the posterior for various
classes of priors; see for instance Ghosal and van der Vaart (2001) and Scricciolo (2001) for
Gaussian mixtures or Rousseau (2007) for beta mixtures. Since here the model corresponds to
a finite k, the L1 posterior concentration rate δn will typically be of order n−1=2, i.e. q=0. This
will imply sharp results on the behaviour of the posterior distribution on the weights of the extra
components; see theorem 1 and the comments on it.

Assumption 2 is a usual regularity assumption and assumption 3 is a weaker version than
the assumptions in Liu and Shao (2004) or in Dacunha-Castelle and Gassiat (1999), since the
likelihood ratio needs only to be integrable on some chosen subset of Γ and not everywhere.
Assumption 4 (first part) is also weaker than in Liu and Shao (2004). It is related to the linear
independence of the functions gγ , ∇gγ and D2

r, sgγ , r � s, and is weaker than requiring that
these functions are linearly independent. In the case of an overfitted mixture the compactness
assumption is important, and in particular the likelihood ratio statistic is not a consistent test
statistic in cases where the parameter space Γ is not compact; see Azais et al. (2006). Here,
however, we prove that it is not a necessary assumption and that the result remains valid when
Γ is not compact under mild conditions, i.e. the second part of assumption 4. These conditions
are in particular satisfied for most regular exponential families, including Gaussian, exponential
and Student mixtures, if the degrees of freedom vary in a compact subset of [1, ∞/; in these
three cases the densities gγ converge to degenerate functions near the boundary of the set. In
the case of discrete distributions, such as Poisson mixtures, it is to be expected that the limit is
still a distribution at least for some of the points of the boundary. However, the limit will often
be linearly independent of the gγis and their derivatives. For instance, in the case of a mixture
of Poisson distributions with parameters λ, when λ→ 0 the density converges to 0 except at
x=0 where it converges to 1, so the limit is a proper distribution. However, this limit is linearly
independent of any function (of x) in the form λx.a1 +a2x+a3x2/ unless a1 =a2 =a3 = 0 and
assumption 4 is satisfied. The assumption 5 on the prior on p is valid for instance in the case of
Dirichlet priors on the weights D.α1, . . . ,αk/.

2.2. Main result: asymptotic behaviour of the posterior distribution on the weights
We now state the main result.

Theorem 1. Under the assumptions 1–5 that the posterior distribution satisfies, let Sk be the
set of permutations of {1, . . . , k}, ᾱ=max.αj, j �k/ and α=min.αj, j �k/.
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(a) If ᾱ<d=2, set ρ={dk0 +k0 −1+ ᾱ.k −k0/}=.d=2− ᾱ/; then

lim
M→∞

lim sup
n

(
En

0

[
Pπ

{
min
σ∈Sk

(
k∑

i=k0+1
pσ.i/

)
>Mn−1=2 log.n/q.1+ρ/

∣∣∣∣∣Xn

}])
=0:

(b) If α>d=2 and ρ′ ={dk0 +k0 −1+d.d −k0/=2}=.α−d=2/.k −k0/

lim
"→0

lim sup
n

(
En

0

[
Pπ

{
min
σ∈Sk

(
k∑

i=k0+1
pσ.i/

)
<" log.n/−q.1+ρ′/

∣∣∣∣∣Xn

}])
=0:

Recall that .α1, . . . ,αk/ are the hyperparameters appearing in the prior distribution on the
weights, and controlling its behaviour when some of the weights are close to 0, and that q is
given in assumption 1. As a consequence of theorem 1, if max.αj, j � k/ < d=2, the posterior
estimates verify

k∑
j=k0+1

Eπ.pj|Xn/=Op{n−1=2 log.n/q.ρ+1/}

as n→∞, under the convention that the classes are labelled such that the posterior means of
the weights pj are in decreasing order. An important special case corresponds to q=0, since in
that case the posterior expectation of the weights of the extra components is of order Op.n−1=2/:

Hence, if none of the components are small, it implies that k is probably not larger than k0.
Also, in the case of longitudinal data, it is possible to choose the largest possible k for all time
periods and to estimate the parameters with this value of k; the Bayesian answer would make
sense and be interpretable, since at each time a component is allocated with a small weight if
and only if it corresponds to an empty component.

In contrast, if min.αj, j � k/ > d=2 and if the number of components is larger than it should
be, then two or more components will tend to merge with non-negligible weights each. This
will lead to less stable behaviour since the weights of each of these two components can vary,
and the selection of the components that will merge can also vary. In the intermediate case, if
min.αj, j � k/ � d=2 � max.αj, j � k/, then the situation varies depending on the αjs and on
the difference between k and k0. In particular, in the case where all αjs are equal to d=2, then
although we have no definite result we conjecture that the posterior distribution does not have
a stable limit.

One of the consequences of the above result is in the choice of the prior on the weights in
mixture models. Since it is more interesting to have the posterior distribution concentrated on
the configuration where the extra components receive no weights as opposed to a merging of
some of the components, it is better to choose small values of the αjs. In particular in the case of
location–scale mixtures then choosing αj < 1 is preferable in this regard. Note that the special
case of a Dirichlet D. 1

2 , . . . , 1
2 / prior which is the marginal Jeffreys prior (associated with the

multinomial model) is among such priors.
The usual case of a hierarchical mixture where the component’s parameters γj are inde-

pendently and identically distributed according to some common distribution hη indexed by
a parameter η where η is itself given a prior π0 falls into the set-up of condition 5 since the
prior mass of sets in the form {γ; |γ0 − γ|� "} is still equivalent to the Lebesgue measure of
this set.

A possible practical use of this theorem is therefore to compute the posterior distribution in
a mixture model with a rather large number of components and a Dirichlet-type prior on the
weights with small parameters (αj) and to check for small weights in the posterior distribution.
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The threshold for deciding which are the small weights is case dependent. This is illustrated in
the real data analysis that is performed in Section 3.2.

The proof of theorem 1 is given in Appendix A; however, we present some aspects of
it that are of interest. In the case where ᾱ< d=2, writing Mn = M log.n/q.1+ρ/ and An =
{minσ∈Sk

.Σi�k0+1pσ.i//>n−1=2Mn}∩{||f0 −fθ||� δn}, i.e. the complement of the event where
the extra components are emptied at a rate of order slightly larger than n−1=2. Then the posterior
probability of An can be written as

Pπ.An|Xn/=

∫
An

exp{ln.θ/− ln.θ0/}dπ.θ/∫
exp{ln.θ/− ln.θ0/}dπ.θ/

:= Nn

Dn

where ln.θ/ is the log-likelihood and θ0 ∈ Θ0, and we need to prove that Pπ.An|Xn/ = op.1/,
which corresponds to the first case of theorem 1. To do so we bound from above Nn and from
below Dn. First we prove that, with probability going to 1,

Dn �Cn−.dk0+k0−1+Σj�k0+1ασ.j//=2,

for any permutationσ of {1, . . . , k}, by considering approximations of Θ0 along paths of the form

|γσ.i/ −γ0
i |�n−1=2, i=1, . . . , k0,

|pσ.i/ −p0
i |�n−1=2, i=1, . . . , k0,∑

j�k0+1
pσ.j/ �n−1=2:

These paths correspond to the configuration where the extra components are emptied at a
rate of order n−1=2. In contrast and by definition, An corresponds to paths approximating Θ0
where at least two components merge; in other words they are associated with partitions t of
{1, . . . , k0} such that there exists i�k0 −1 with ti+1 � ti +2 and at least two components merging
with γ0

i have weights that are much larger than n−1=2. We prove in Appendix A that each of
these paths has a prior mass bounded by op.Dn/ when d=2 >max{αj, j =1, . . . , k}. In this case,
dk0 + k0 − 1 + minσ∈Sk

.Σj�k0+1αj/ appears as an effective dimension of the model, which is
different from the number of parameters, dk + k − 1, or even from some ‘effective number of
parameters’ that would be given by the number of parameters used to parameterize the path
minσ∈Sk

.Σj�k0+1pσ.j//=O.n−1=2/, owing to the influence of the prior via the αjs. This can be
understood as a measure of complexity of the model induced by the prior.

In the case where d=2 < min{αj, j = 1, . . . , k}, we need to prove that Pπ.Bn|Xn/ = op.1/,
with Bn = {minσ∈Sk

.Σi�k0+1pσ.i// < "n} ∩ {||f0 − fθ|| � δn} with "n = " log.n/−q.1+ρ′/. This is
done also by bounding from below Dn and from above a numerator similar to Nn, with Bn

instead of An in its definition. A reverse phenomenon takes place: we bound from below Dn by
considering approximations of Θ0 along paths of the following form. If I1 ={1, . . . , k −k0 +1},
Ii ={k −k0 + i}, i=2, . . . , k0,∣∣∣∣∣ ∑j∈Ii

pj∑
j∈Ii

pj
γj −γ0

i

∣∣∣∣∣�n−1=2,

∣∣∣∣ ∑
j∈Ii

pj −p0
i

∣∣∣∣�n−1=2, ∀j ∈ Ii, i=1, . . . , k0, |γj −γ0
i |�n−1=4,

i.e. by forcing all the parameters of the extra components to be close to γ0
1 . This leads to

Dn �Cn−0:5{k0d+k0−1+d.k−k0/=2},
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with large probability whereas π.Bn/=op.Dn/ so that

Pπ.Bn|Xn/=op.1/:

An interesting feature of this argument is that it shows that the asymptotic behaviour of the
posterior distribution is driven by prior mass of approximating paths to the true density f0.
This acts as a penalization factor in a way which is more subtle than the mere dimension of
the parameter. This phenomenon was also observed in Rousseau (2007) in the framework of
consistency of Bayes factors. It is of interest to note that the natural penalization that is induced
by Bayesian approaches is not only crucial in testing problems but also in point estimation
problems.

In the following section we conduct a simulation study to illustrate the above results but also
to study the possible behaviours that we could expect when max.αj/�d=2. We also consider a
real data analysis to present some of the ways to use theorem 1 in practice; a good reference for
such uses is also Frühwirth-Schnatter (2006).

3. Examples

We first consider a simulation study illustrating the theoretical results. Two cases are considered:
d=2 < min.αj/ and d=2 > max.αj/.

3.1. Simulated example
We consider a very simple study of fitting a two-component Gaussian mixture model to a sample
of data, Y = {yi, i = 1, . . . , n}, generated from a single-component Gaussian distribution, say
Nq.0, 1/, which is the q-dimensional vector whose components are independent and identically
distributed standard Gaussian random variables; to simplify the notation N .0, 1/ =N1.0, 1/.
Note that assumptions 1–5 are satisfied in the case of location mixtures of Gaussian distributions
and location–scale mixtures of Gaussian distributions. In particular, condition 1 has been proved
by Ghosal and van der Vaart (2006); conditions 2–4 are weaker versions of the hypothesis
that was required in Chambaz and Rousseau (2008) and are therefore satisfied for both types
of mixtures of Gaussian distributions. We consider for p a uniform prior on [0, 1] and the
component’s parameters are assumed independent and identically distributed with an N .0, 104/

prior on the means and a uniform U.0, 100/ prior on the variances, so that condition 5 is also
satisfied. In all cases, we computed the posterior distribution for M replications of samples of
sizes n=50, 100, 500, 1000, 5000, 10000 of standard Gaussian random variables N .0, 1/, where
M =50 for the sample sizes n=50, 100, 500 and M =20 for n=1000, 5000, 10000. Figs 1 and 2
show boxplots of the posterior means of p, where p is the largest among the two possible weights
(i.e. p > 1−p). In the following description G denotes the model to be estimated. We consider
three cases corresponding to dimensions d =1, 4, 2.

(a) Case 1 has d =1 and α1 =α2 =1 >d=2, a location mixture of univariate Gaussian distri-
butions with fixed variance: generating distribution

yi ∼N .0, 1/∈R;

model

G=pN .μ1, 1/+ .1−p/N .μ2, 1/,

where N .μ, τ / denotes the univariate normal distribution with mean μ and variance τ .
In this case theorem 1 implies that Pπ.p > 1 − "|Xn/ (p > 1 − p) is small as n becomes
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Fig. 1. Boxplot of posterior means of p in the case d D1<2α

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 50, 100, 500, 1000, 5000

Fig. 2. Boxplot of posterior means of p in the case d D4>2α

large for " sufficiently small but fixed. Thus although we expect to see a component with
smaller weight, this weight should not go to 0; we also expect to see the two means μ1
and μ2 become increasingly close to 1.

(b) Case 2 has d = 4 and α1 =α2 = 1 < d=2, location–scale mixture of bivariate Gaussian
distributions: generating distribution

yi ∼N2.0, 1/∈R2;
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Fig. 3. Boxplot of posterior means of p in the case d D2D2α

model

G=pN2.μ1, Σ1/+ .1−p/N2.μ2, Σ2/

where μj = .μj1,μj2/′ and Σj is the diagonal matrix with diagonal elements .σ2
j1,σ2

j2/. In
this case we expect the posterior mean of p (p> 1−p) to increase to 1 as n increases. As
convergence is quite noticeable we have run simulations up to n=5000 only.

(c) Case 3 has d = 2 and α1 =α2 = 1 = d=2, location–scale mixture of univariate Gaussian
distributions: generating distribution

yi ∼N .0, 1/∈R;

model

G=pN .μ1,σ2
1/+ .1−p/N .μ2,σ2

2/:

This is the case where there is no theoretical answer.

The empirical findings support the theoretical asymptotic behaviour that was described in the
previous section: for d =1 (case 1) the posterior distribution of the weights is unstable, even with
increasing sample size (Fig. 1). The means of the components become increasingly close to 0 as
the sample size increases. In contrast, when d = 4 (case 2) one component becomes effectively
empty as n�1000 (Fig. 2). In the case where d =2 =2α (case 3) the posterior expectation of p
does not seem to converge clearly to 1, or if it did it would be very slowly since at n=10000 we
still observe a large proportion of posterior means of p to be less than 0.95. Still there is a large
difference between n=50 and n�100 and, for larger values of n, the posterior means of p seem
to be reasonably close to 1 (Fig. 3).

3.2. Case-study: school performance in mathematics and science
The performance of school students in mathematics and science is a key indicator for educators
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as well as governments across the world. It is often of interest to identify whether subgroups of
students or schools can be identified on the basis of common tests in mathematics and science,
and the features of such subgroups if they exist. In the study that is considered here, scores on
common mathematics and science tests were obtained for 4500 students in 150 schools across a
single country. A visual representation of the data is provided in Fig. 4.

This data set closely reflects the simulation study, since both univariate and multivariate
(bivariate) analyses can be undertaken, at both the school level (averaging over students), for
which the sample size is modest (n=150), and at the student level (ignoring schools), for which
the sample size better reflects the asymptotic situation. Of course, for a formal analysis of these
data, a mixed model would be more appropriate, with students nested within schools. Although
this hierarchical structure is easily accommodated in the Bayesian framework, it is also arguable
that such a model might reduce the ability to classify students across schools into different
subgroups on the basis of their test results. The univariate analyses focused on the mathematics
scores. If y denotes the mathematics score for either a school or a student, the model for y
is y ∼ Σk

j=1pj N .μj,σ2
j /. At the school level, we let yi denote the average mathematics score

for the ith school, i = 1, . . . , n = 150, with sample mean 473.0 and sample standard deviation
63.5 and at the student level yi is the score of a student, i = 1, . . . , n = 4500. In all instances
the priors on the μs were diffuse normal priors: N .0, 10000/ and the priors on the σs were
U.0, 100/.

First, a single normal model was fitted using a diffuse normal prior. The posterior estimates
of μ and σ were then 471 (standard deviation 5.213) and 64.09 (standard deviation 3.76)
respectively. Second, a two-component mixture model was fitted, assuming that the compo-
nent means, variances and weights are unknown .d =2/. A Dirichlet (α1 =α2 =1=d=2) prior
was placed on (p1, p2). We obtained the following posterior estimates and 95% credible intervals
for the parameters: p1 =0:07 .4:6×10−4, 0:62/, p2 =0:93 .0:38, 1:0/, μ1 =315:3 .128:7, 451:4/,
μ2 = 476:4 .463:5, 499:0/, σ1 = 49:7 .4:0, 96:8/ and σ2 = 62:5 .52:4, 72:2/. An analysis with a
Dirichlet. 1

2 , 1
2 / prior on the weights was conducted, leading to similar results. An analogous

three-component normal mixture with Dirichlet.1, 1, 1/ prior on the weights produced estim-
ates (with 95% credible intervals) p1 =0:07 .4:4×10−4, 0:56/, p2 =0:36 .4:2×10−3, 0:94/, p3 =
0:58 .0:03, 0:99/, μ1 =301:5 .114:6, 454:9/, μ2 =436:9 .467:2, 581:8/, μ3 =504:2 .467:2, 581:8/,
σ1 = 49:1 .3:99, 96:68/, σ2 = 49:7 .8:3, 91:0/ and σ3 = 53:2 .9:7, 76:8/. Fitting the model with
a Dirichlet. 1

2 , 1
2 , 1

2 / prior led to posterior means and 95% credible intervals p1 = 0:007 .4:7 ×
10−6, 0:04/, p2 = 0:20 .4:7 × 10−5, 0:98/ and p3 = 0:80 .8:5 × 10−3, 0:98/. Given the large
credible intervals of the posterior distribution, it is difficult, in this case, to make any
statement about a possible overfitted model, even for k = 3 under a Dirichlet.1, 1, 1/ prior;
however, the results under the Dirichlet. 1

2 , 1
2 , 1

2 / prior suggest that a two-component mixture
model would be sufficient to represent the data. We also tried a four-component mixture
model with a Dirichlet(1,1,1,1) prior, but again the credible intervals were considerably over-
lapping.

Continuing the univariate analysis, at the student level, the sample mean and standard devi-
ation of the n=4500 students’ mathematics scores were 474.4 and 78.26 respectively. Assuming
first that the standard deviation was known, the posterior estimates of p1 and p2 were 0.53
and 0.46. An analogous three-component normal mixture gave posterior estimates for p1, p2
and p3 of 0.23, 0.51 and 0.26. Fitting a two-component normal mixture (location–scale) model
gave estimates (with 95% credible intervals) for p1 and p2 of 0.90 (0.85, 0.93) and 0.1 (0.060,
0.15). A three-component normal mixture model produced estimates for p1, p2 and p3 of 0.029
.1:3×10−3, 9:9×10−2/, 0.72 (0.35, 0.92) and 0.25 (0.073, 0.64). Interestingly, although we are in
the case d=2=αj, for which we have no asymptotic result, the posterior distribution puts most of
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its mass on the configuration with one empty and two non-empty components. The credible
intervals, compared with those obtained at the school level, are much narrower, indicating that
an adequate model would be the two-component mixture model; this is in agreement with the
bivariate analyses.

The bivariate analyses included both the mathematics and the science scores. Thus, at the
school level, (yi1, yi2) denotes the average mathematics and science scores for the ith school,
i = 1, . . . , 150, and .y1, y2/′ ∼N2{.μ1,μ2/′, Σ}. Fitting a two-component normal mixture with
component means, weights and diagonal variance–covariance matrix unknown, gave p1 and p2
as 0.93 (0.85, 0.98) and 0.073 .2×10−3, 0:25/. The analogous three-component normal mixture
produced p1, p2 and p3 equal to 0.81 (0.68, 0.90), 0.19 (0.09, 0.31) and 0.0067 .4:4×10−7, 4:3×
10−2/. In the bivariate analyses of the student level data, fitting a two-component mixture gave
estimates for p1 and p2 of 0.89 (0.76, 0.98) and 0.11 (0.008, 0.24) and a three-component mixture
gave estimates of p1, p2 and p3 of 0.54 (0.45, 0.61), 0.40 (0.31, 0.49) and 0.06 (0.03, 0.12). These
analyses broadly confirm the results that are proposed in this paper. A visual assessment of
Fig. 4 suggests that a single normal distribution adequately described the school-based data.

The student-based analysis assuming a known variance represents the first situation described
in theorem 1, in which asymptotically the superfluous components will be non-empty and
consequently exhibit poor convergence. In contrast the bivariate analysis at the student level
strongly indicates that there are at most two components in the mixture since the weight of
the third component is very small with large probability. The existence of a second component
seems confirmed at least for the student level bivariate data, but it is quite possible that both
components are close.

The school univariate data seem to follow the theory, at least as far as point estimates are
concerned, since with known variances (d = 1 < 2α) we have balanced weights when k = 2 and
three non-negligible weights when k =3 whereas with unknown mean and variance the analyses
represented the middle situation, for which we do not have results, and we observe that the
extra components seem empty asymptotically although this process may be slow. However, the
credible regions are large, which makes it difficult to have a definite answer based only on these
data.

The bivariate plots suggested that a two-component mixture might be required to describe
the slight irregularity in the tail of the distribution; this was particularly noticeable for the full
student level data set. These bivariate analyses represented the third situation, in which excess
components were expected to empty out. This was indeed observed for the three-component
mixtures fitted to both the school level and the student level data.

4. Discussion

This paper has contributed to an increased understanding of an important problem in mixture
modelling, namely the concern about the effect of overfitting the number of components in
the mixture. This practice is ubiquitous and its influence is felt both in situations in which the
mixture components and associated parameters are literally interpreted and in situations in
which the mixture is used as a convenient model fitting framework.

The results that are presented in this paper contribute to the partial solutions that have
been provided in previous literature by describing the asymptotic behaviour of the posterior
distribution when the typical additive mixture distribution is overfitted. The main consistency
result indicates that the posterior distribution concentrates on a sparse representation of the
true density; this is exhibited by a subset of components that adequately describe the density
remaining and any superfluous components becoming empty. Estimators based on the posterior
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distribution thus exhibit quite stable behaviour in the presence of overfitting, as opposed to
alternatives such as the maximum likelihood estimator which can be quite unstable in this
situation.

Importantly, the asymptotic behaviour appears to depend on the dimension of the mixture
parameters in relation to the form of the prior distribution on the weights; in particular in cases
of low dimensional parameters γ (d � 2) it becomes necessary to favour small weights with a
prior in the form p1

−1=2. . . pk
−1=2, which interestingly corresponds to the non-informative prior

in a multinomial model. It thus appears that, in this subtle framework, the prior has an effect
to first order since the asymptotic behaviour of the posterior distribution depends heavily on
the form of the prior.

These results thus provide practical guidelines for the cases that they address. Overfitted
mixtures can thus be used as an alternative to estimating the number of components and it also
provides some guidelines on the choice of the prior distribution.

The paper has also identified cases for which further research is required, such as the inter-
mediate case where min.αj/�d=2�max.αj/, for which no description of the asymptotic beha-
viour of the posterior distribution has been obtained.

Appendix A: Proof of theorem 1

Set A′
n ={∃I ={j1, . . . , jk−k0}, Σi∈Ipi >Mnδn} for some large Mn (depending on δn, Mn will be chosen as a

power of log.n/ or as a large constant. The posterior probability of interest is bounded by

Pπ.A′
n|Xn/=Pπ.A′

n ∩{||f −f0||�Mδn}|Xn/+oP .1/

=

∫
An

exp{ln.θ/− ln.θ0/} dπk.θ/∫
||f0−fθ ||�Mδn

exp{ln.θ/− ln.θ0/}dπk.θ/

+oP .1/

where An =A′
n ∩{||f −f0||�Mδn} and M is a fixed positive constant. We denote by

Nn =
∫

An

exp{ln.θ/− ln.θ0/}dπk.θ/,

Dn =
∫

||f0−fθ ||�Mδn

exp{ln.θ/− ln.θ0/} dπk.θ/:

.4/

To prove the first part of theorem 1 we first prove if maxj.αj/ < d=2 that, for all " > 0, there exists C" and
there exists a permutation σ :{1, . . . , k}→{1, . . . , k}, subject to

Pn
0 .Dn �C"n

−.dk0+k0−1+Σk
j=k0+1ασ.j//=2

/> 1− ",

π.An/�C
δ

dk0+k0−1+Σk
j=k0+1ασ.j/

n

M
d=2−maxj .αj /
n

:

.5/

The combination of these two inequalities implies that for all "> 0, with probability larger than 1− ",

En
0{Pπ.An|Xn/}=o.1/

which ends the proof of the first part of theorem 1. Similarly if d=2 < min{αj , j = 1, . . . , k}, we obtain
with Mn = "nδ

−1
n , where "n is either a small constant or a sequence converging to 0 at the rate a power of

log.n/−1,

Pn
0 .Dn �C"n

−{dk0+k0−1+d.k−k0/=2}=2/> 1− ",

π.Bn/�C max
σ

.δ
dk0+k0−1+Σk

j=k0+1ασ.j/

n /,
.6/
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with

Bn ={‖f −f0‖� δn}∩{∃I = .j1, . . . , jk−k0 /, Σ
i∈I

pi � "n}
which leads to

En
0{Pπ.Bn|Xn/}=o.1/:

We now establish conditions (5) and (6). We start with expression (5). Throughout the proof we write all
constants whose values are of no consequence to be equal to 1. First

Dn �
∫

Sn

exp{ln.θ/− ln.θ0/}dπk.θ/

where

Sn ={.p1, . . . , pk, γ1, . . . , γk/; |pj −p0
j |�n−1=2; |γj −γ0

j |�n−1=2, j =1, . . . , k0; |γj −γÅ
j |� "1, j � k0 +1}:

Here γÅ
j ∈ Γ0, j � k0 + 1, and satisfy mink0<l �=j |γÅ

j − γÅ
l | > C"1, with C, "1 > 0 fixed. By definition of Γ0,

minl�k0 |γÅ
j −γ0

l |> C"1 and, by definition of Sn, Σj�k0+1 pj � k0n
−1=2. Such a path to approach Θ0 corres-

ponds to the partition t = .0, 1, 2, . . . , k0/. Let .φt,ψt/ be the parameterization (of θ) associated with the
partition t. We consider a Taylor series expansion of ln.φt,ψt/− ln.φ0

t ,ψt/, corresponding to θ= .φt,ψt/∈
Sn and θ0 = .φ0

t ,ψt/. By convention and without loss of generality we write p0
j = 0 and γ0

j = γÅ
j for j =

k0 +1, . . . , k and, following the definition of φt, pk0 =1−Σi�=k0 pi. Then

ln.φt,ψt/− ln.φ0
t ,ψt/= .φt −φ0

t /
TUn

√
n− n

2
.φt −φ0

t /
TJ.θ̄/.φt −φ0

t / .7/

where J.θ̄/=−@2ln.φ̄t,ψt/=@φt @φT
t , φ̄t ∈ .φt,φ0

t / and

Un.i/=Gn

(∇lgγ0
j

f0

)
, i= l+ .j −1/d, j �k0, l=1, . . . , d,

Un.i/=Gn

(
fγ0

j
−fγ0

1

f0

)
, i=k0d + j −1j�k0+1, 1� j �=k0 �k

and Un =Op.1/. Denote Ωn.c0, C/={Xn; supθ∈Sn
||J.θ/||�c0n; |Un|�C}. Therefore the log-likelihood ratio

is bounded from below by .φt −φ0
t /

TUn

√
n− .C0n=2/||φt −φ0

t ||2 for some positive constant C0 on Ωn.c0, C/.
This leads to, on Ωn.c0, C/,∫

Sn

exp{ln.θ/− ln.θ0/} dπk.θ/� exp
(

1
2C0

||Un||2
)∫

Sn

exp

(
−nC0

2

∥∥∥∥∥φt −φ0
t − C−1

0 Un√
n

∥∥∥∥∥
2)

dπk.θ/

�
∫

Sn

exp

(
−nC0

2

∥∥∥∥∥φt −φ0
t − C−1

0 Un√
n

∥∥∥∥∥
2)

dπk.θ/:

Recall that, on Sn, pj � 0 for j � k0 + 1. Using assumption 5 we can bound from below πk.θ/ by
c1p

αk0+1−1

k0+1 . . . p
αk−1
k . Thus, on Ωn.c0, C/, we have

∫
Sn

exp

(
−C0n

2

∥∥∥∥∥φt −φ0
t − C−1

0 Un√
n

∥∥∥∥∥
2)
πk.θ/dθ

�n−.dk0+k0−1/=2
k∏

j=k0+1

∫ δn=k0

0
exp
[
−nC0

2
{pj −Un.j/}2

]
p
αj−1
j dpj

�n−{dk0+k0−1+Σj>k0 .αj−1/}=2
k∏

j=k0+1

∫ δn=k0

c=
√

n

exp
[
−nC0

2
{pj −Un.j/}2

]
dpj

�n−.dk0+k0−1+Σj>k0αj /=2
k∏

j=k0+1
Φ.C1/

�n−.dk0+k0−1+Σj>k0αj /=2
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where c > 0 is chosen sufficiently small and where C1 depends on C, c and C0. To obtain the best lower
bound we can choose the permutation σÅ which minimizes Σj>k0 ασ.j/ which we set equal to the identity
to simplify the notation and if a> 0 is sufficiently small

Pn
0 .Dn <an−.dk0+k0−1+Σj>k0αj /=2/�Pn

0 {Ωc
n.c0, C/}:

The lower bound in expression (5) is then proved by determining an upper bound on Pn
0 {Ωc

n.c0, C/}. Note
first that for all ">0 there exists C>0 such that, with probability greater than 1−", |Un|�C. Then we bound
for each i, i′ �k −1+k0d, and some c> 0 sufficiently small, Pn

0 {J.i, i′/−nI.i, i′/<cn}, where I is a Fisher
information matrix defined as En

0{J.θ0/} with the constraint here that θ0 = .p0
1, . . . , p0

k0
, 0, . . . , 0, γ0

1 , . . . γ0
k /,

writing γ0
j =γÅ

j when j =k0 +1, . . . , k. We have, if i, i′ �dk0 +1,

J.i, i′/−nI.i, i′/=Gn

{
.gγ0

j
−gγ0

k0
/.gγ0

j′
−gγ0

k0
/

f 2
0

}
√

n+nPn{Δθ̄.i, i′/}

with j and j′ the indices corresponding to i and i′ as in the definition of Un,

Δθ̄.i, i′/= .gγ̄j
−gγ̄k0

/.gγ̄j′ −gγ̄k0
/

f 2
θ̄

−
.gγ0

j
−gγ0

k0
/.gγ0

j′
−gγ0

k0
/

f 2
0

:

Using a Tchebychev inequality the first term is less than nc=2 with probability

Cn−1F0

[{
.gγ0

j
−gγ0

k0
/.gγ0

j′
−gγ0

k0
/

f 2
0

}2 ]
� Ck0

n min
l�k0

{.p0
l /

4} +n−1 max
γ∈Γ0

{
F0

(
g4
γ

f 4
0

)}
:

Assumption 3 implies that the second term on the right-hand side of this inequality is of order O.n−1/,
so that the above probability is O.n−1/. To study the behaviour of Δθ.i, i′/ we consider its derivatives: if
i, i′ >dk0, ∣∣∣∣@Δθ.i, i′/

@pl

∣∣∣∣=
∣∣∣∣ .gγj

−gγk0
/.gγj′ −gγk0

/.gγl
−gγk0

/

f 3
θ

∣∣∣∣
�

.ḡγ0
j
+ ḡγ0

k0
/.ḡγ0

j′
+ ḡγ0

k0
/.ḡγ0

l
+ ḡγ0

k0
/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)3

and, if i, i′ >dk0, l�k,∣∣∣∣@Δθ.i, i′/
@γl

∣∣∣∣=
∣∣∣∣ .gγj

−gγk0
/.gγj′ −gγk0

/∇gγl

f 3
θ

+1j=l

∇gγj
.gγi′ −gγk0

/

f 2
θ

+1l=j′
∇gγj′ .gγj

−gγk0
/

f 2
θ

−1l=k0

∇gγk0
.gγj′ +gγj

−2gγk0
/

f 2
θ

∣∣∣∣

�
.ḡγ0

j
+ ḡγ0

k0
/.ḡγ0

j′
+ ḡγ0

k0
/ sup

|γ−γ0
l
|�δ

|∇gγ |

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)3 +1j=l

sup
|γ−γ0

j |�δ

|∇gγ |.h̄γ0
j′

+ ḡγ0
k0

/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)2

+1l=j′

sup
|γ−γ0

j′ |�δ

|∇gγ |.h̄γ0
i
+ ḡγ0

k0
/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)2 +1l=k0

sup
|γ−γ0

k0
|�δ

|∇gγk0
|.ḡγ0

j
+ ḡγ0

j′
+2ḡγ0

k0
/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)2 :

Assumptions 2 and 3 imply that there exists δ, M> 0 such that

F0

{
sup
θ∈Sn

∣∣∣∣@Δγ.i, i′/
@γl

∣∣∣∣
}

�M<∞ ∀l� k, ∀i, i′ >dk0,
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so that, for all c> 0, there exist δ0 such that, for all δ< δ0,

P0

{
Pn| sup

θ∈Sn

|Δ.i, i′/||>c

}
� δM

c
,

which can be made as small as necessary. Similarly if i>dk0 and i′ �dk0,

J.i, i′/−nI.i, i′/=Gn

{
.gγ0

j
−gγ0

k0
/∇gγ0

j′

f 2
0

}
√

n+nPn{Δθ̄.i, i′/}

with

Δθ̄.i, i′/= .gγ̄j
−gγk0

/∇gγ̄j′

f 2
θ̄

−
.gγ0

j
−gγ0

k0
/∇gγ0

j′

f 2
0

:

Assumptions 2 and 3 imply that using a Tchebychev inequality |J.i, i′/ − nI.i, i′/| < cn for all c > 0 with
probability of order o.1/. Also looking at the derivative of Δθ.i, i′/ we obtain an upper bound with terms
of the form

sup
|γ−γ0

j |�δ

|∇gγ | sup
|γ−γ0

j′ |�δ

|∇gγ |

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)2 ,

sup
|γ−γ0

j |�δ

|D2gγ |{ḡ.γ0
j′/+ ḡγ0

k0
}

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)2 ,

sup
|γ−γ0

j′ |�δ

|∇gγ |.ḡγ0
i
+ ḡγ0

k0
/.ḡγ0

j
+ ḡγ0

k0
/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)3 ,

sup
|γ−γ0

j′ |�δ

|∇gγ | sup
|γ−γ0

j |�δ

|∇gγ |.ḡγ0
i
+ ḡγ0

k0
/

.1− δn/3

(
k∑

j=1
p0

jgγ0
j

)3

so that

Pn
0 [|Pn{sup

θ∈Sn

|Δ.i, i′/|}|<c]�Cδ=c:

The same calculations can be made for the terms J.i, i′/ when i, i′ �dk0, so that finally there exists c0, C>0
such that for all θ∈Sn Pn

0 {Ωc
n.c0, C/}�2" and the lower bound of Dn in expression (5) is established.

To bound π.An/ in expression (5), we need to characterize θ ∈ An. For each θ ∈ An, as n increases θ
converges towards Θ0 =∪t Θ0t, i.e. minσ,t |φt −φ0

t |→0, where the minimum is taken over the set of possible
permutations of {1, . . . , k} and partitions t. By convention we assume that, for all θ0 ∈Θ0, θ0 ∈Θ0t if, for
all j � tk0 +1, γj =∈{γ0

1 , . . . , γ0
k0

}. Consider a partition t and a permutation σ which minimizes |φt −φ0
t |, for

a given θ. A Taylor series expansion of fθ in terms of φt around φ0
t leads to

fθ =f0 + .φt −φ0
t /

Tf ′
.φ0

t , ψt/
+ 1

2 .φt −φ0
t /

Tf ′′
.φ0

t , ψt/
.φt −φ0

t /+ 1
6 .φt −φ0

t /
.3/f

.3/

.φ̄t , ψt/
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where φ̄t ∈ .φt,φ0
t /. The last term of the right-hand side of this equation is bounded by C|φt −φ0

t |3 in L1
for some positive constant C> 0; it is thus o.|φt −φ0

t |2/. Define then

γ=γ.t,σ/=
([

.si +p0
i /
(∑

j∈Ii

qjγj −γ0
i

)]k0

i=1
, .si/

k0
i=2, .pj/

k
j=tk0 +1

)
λ=λ.t,σ/= .[

√
qj.γj −γ0

i /]j∈Ii
, i=1, . . . , k0/:

Then .2|γ|+ |λ|2/.t,σ/→ 0 as n→∞, and, dropping the dependence on σ and t in the notation, we can
write, with η=|λ|2=.2|γ|+ |λ|2/,

fθ −f0 = 1
2 .2|γ|+ |λ|2/{.1−η/w.γ/TL′ +ηw.λ/TL′′ w.λ/+o.1/} .8/

where w.x/=x=|x| if x �=0 and

L′ = ..∇gγ0
1
/T, . . . , .∇gγ0

k0
/T, gγ0

1
−gγ0

k0
, . . . , gγ0

k0−1
−gγ0

k0
, gγ0

tk0
+1

−gγ0
k0

, . . . , gγ0
k
−gγ0

k0
/,

L′′ =diag.p0
1D2gγ0

1
, . . . , p0

k0
D2gγ0

k0
/:

We now prove that there exists c > 0 and N ∈ N such that, for all n�N and all θ∈An, |λ|2 + 2|η|� δn=c.
Indeed, if it were not so, we could construct a sequence cn decreasing to 0 such that there would exist a
subsequence θrn satisfying

|.1−ηrn /w.γrn /TL′
rn

+ηrn w.λrn /TL′′ w.λrn /|� cn: .9/

Thus, to prove that |λ|2 +2|η|�δn=c for some c, it is enough to find a subsequence of θrn which contradicts
condition (9). Thus to simplify the notation we write without loss of generality all subsequences θn. Since
the set of possible partitions t and σ is finite, there is a subsequence of θn along which t and σ are constants.
From now on we work with this t and σ, which we drop from our notation hereafter. Since w.γn/, w.λn/
and ηn vary in a compact set there is a subsequence which converges to some values w.γ/, w.λ/ and η
on the unit spheres of dimensions k0 and k − k0 − 1 and on [0, 1] respectively, and which we still denote
w.γn/, w.λn/ and ηn. Despite the notation w.γ/ and w.λ/ the above statement does not imply that γn or λn

converges towards γ and λ.
We first consider the case where Γ is compact. Then θn belongs to a compact set and there is a subsequence

such that L′
n converges to some vector L′

∞ corresponding to some θ∈Θ0. At the limit, inequality (9) becomes

.1−η/w.γ/TL′
∞ +ηw.λ/TL′′ w.λ/=0

and if 0 <η< 1 we can construct .φ,ψ/ based on w.γ/, w.λ/ and η such that there exists u> 0 for which

f ′
φ0,ψ.φ−φ0/+0:5.φ−φ0/T f ′

φ0,ψ.φ−φ0/=u.1−η/w.γ/TL′
∞ +uηw.λ/TL′′w.λ/=0

which contradicts assumption 4. If η= 1 such a construction still exists and satisfies, for all i= 1, . . . , k0,
Σj∈Ii

qjγj =γ0
i , for all i=1, . . . , k0 −1, si =0, for all i= tk0 +1, . . . , k, pi =0 and, for all i=1, . . . , k0, j ∈ Ii,

.γj −γ0
i /

√
qj =uwti−1+j with u>0 small. This is possible even if there exists i�k0 such that ti = ti−1 +1, i.e.

the class of components close to γ0
i is a singleton, since ηn →η=1 implies that |γn|=o.|λ|n|2/ and

|γti , n −γ0
i |=o

{∑
i

∑
j∈Ii

qj.γj, n −γ0
i /2

}
: .10/

Therefore if wti.λ̃n/→0 we can choose γti =γ0
i . If η=0, then inequality (9) leads to w.γ/TL′

∞ =0. Note that
the constraints on w.γ/ are as follows: for the components corresponding to pj , j � tk0 + 1, the terms wl

are greater than or equal to 0. Assumption 4 together with the positivity of the weights that are associated
with the pjs, j = tk0 +1, . . . , k, imply that, for all i=1, . . . , k0 −1, wi.γ/T ∇gγ0

i
+wdk0+i.γ/g0

γi
=0 and

∀i�dk0 +k0, wi.γ/=0, and gγ0
k0

2k0−1∑
i=dk0+1

wi.γ/−wk0 .γ/∇gγ0
k0

=0:

Therefore for all i=1, . . . , k0 −1

wk0+i.γ/=−
wi.γ/T ∇gγ0

i

g0
γi

=−wi.γ/T ∇ log.gγ0
i
/:
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Since Eγ0
i
[∇ log{gγ0

i
.X/}] = 0, the above equality implies that, for all i= dk0 + 1, . . . , .d + 1/k0, wi.γ/= 0.

The regularity assumption 2 (positivity of the Fisher information matrix) of each model gγ implies that
wT ∇ log.gγ/=0⇔w=0: We finally obtain that w.γ/=0 which contradicts the fact that w.γ/ belongs to the
sphere with radius 1. If Γ is not compact, for any converging subsequence of θn to a point in Θ0 for which
all components parameters γj belong to Γ or for which all components γj correspond to a probability
density (see assumption 4) we can apply the arguments of the compact case, leading to a contradiction
of condition (9). We thus only need to consider subsequences which do not converge to such a point. In
other words and without loss of generality we can assume that θn converges to a point in Θ̄0, where at
least one of the components’ parameters belongs to @Γ̃, where @Γ̃={γ ∈ @Γ;

∫
gγ.x/dμ.x/∈{0, ∞}}. Let

J ={j �k;γj, n →@Γ̃} �=∅. By definition of t, J ⊂{tk0 +1, . . . , k} and choosing σ accordingly we can write
J ={k1, . . . , k} with k1 � tk0 + 1. Hence, for all j < k1, there exists γj ∈Γ such that γj, n →γj . We split L′

n

into L′
n,.1/ and L′

n,.2/ where L′
n,.2/ = .gγj, n

− g0
γk0

, j = k1, . . . , k/ and, by definition of k1, L′
n,.1/ converges to

L′
∞, .1/ so inequality (9) becomes, in the limit,

|.1−η/wT
.1/.γ/L′

.1/ + .1−η/wT
.2/.γ/L′

n,.2/ +ηw.λ/TL′′w.λ/|1 →0 .11/

as n →∞, where the only term depending on n is L′
n,.2/. If η< 1 then expression (11) can be written as

follows: there exists h integrable such that

lim
n→∞

{∣∣∣∣ k−k1+1∑
j=1

w.2/,j.γ/gγj+k1−1, n
−h

∣∣∣∣
1

}
=0;

if w.2/.γ/ �=0 then set w̄2 =Σl w.2/, l and, since w.2/, l �0 for all l, then expression (11) can be expressed as∣∣∣∣ k−k1+1∑
j=1

pjgγj+k1−1, n
−h=.1− w̄2/

∣∣∣∣
1

→0, pj =w.2/,j=w̄2:

Thus h=.1 − w̄2/ is a probability density and Σk−k1+1
j=1 pjgγj+k1−1, n

converges towards a proper probability
density which contradicts the definition of J. Hence w.2/ = 0 and we can apply the same arguments as in
the compact case to conclude. If η= 1, then we can use the same argument as in the compact case since
L′

n,.2/ has no influence.
Therefore on An

|λ|2 +2|γ|� δn,∑
j�k0+1

pj >Mnδn

so that, for all θ∈An, .t,σ/ must satisfy

∃i�k0, card.Ii/�2, ∃j1, j2 ∈ Ii, qj1 >"=k0, qj2 >.Mn −k/δn >Mnδn=2

if Mn is sufficiently large; without loss of generality we set i=1 and j1 =1 and j2 =2. Then we obtain

|si|� δn, ∀i�k0 −1 pj � δn, j = tk0 +1, . . . , k,
∣∣∣ ∑

j∈Ii

qjγj −γ0
i

∣∣∣� δn, qj|γj −γ0
i |2 � δn:

We now bound the prior probability of such a set: the constraints on the sis and on the pjs imply that

π.{|si|� δn, ∀i�k0}/�Cδk0−1
n ,

π.{pj � δn, j = tk0 +1, . . . , k}/� δ
Σk

j=tk0
+1αj

n :

Also on I1

q1.γ1 −γ0
1/=− ∑

j∈I1, j>1
qj.γj −γ0

1/+O.δn/, q2 >Mnδn=2, |γj −γ0
1 |�

√
.δn=qj/, j ∈ I1;

the prior probability of the set of .q1, γ1, q2, γ2, qj , γj , j > 2, j ∈ I1/ satisfying the above constraints is
bounded by

V1 � δd
n

∫
q2�Mnδn=2

.δn=q2/
d=2q

α2−1
2 dq2

∏
j>2, j∈I1

∫
qj , γj

1|γj−γ0
1 |�√

.δn=qj/q
αj−1
j dqj dγj:
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Note that ∫
qj , γj

1|γj−γ0
1 |�√

.δn=qj/q
αj−1
j dqj dγj � δ

αj
n + δd=2

n

∫ 1

δn

qαj−1−d=2 dq

� δ
αj∧d=2
n log.n/

1αj=d=2

and we finally obtain that if q=Σk0
j=11αj=d=2

V1 � log.n/qδd
nδ

Σ
t1
j=2αj∧d=2

n M
maxj .αj /−d=2
n :

Similarly the prior probability of the set of parameters that is associated with Ii is bounded by

Vi � δ
d+Σ

ti
j=ti−1+2αj∧d=2

n :

Finally the volume of the set of θ∈An that is associated with the partition t is bounded by

Vt � δ
k0−1+Σk

j=tk0
+1αj+dk0+Σ

tk0
j=3αj∧d=2−Σ

k0−1
i=1 αti+1∧d=2

n log.n/qM
maxj .αj /−d=2
n :

If maxj.αj/<d=2 then

Vt � δ
k0−1+dk0+Σk

j=2αj−Σ
k0−1
i=1 αti+1

n M
maxj .αj /−d=2
n :

So, with probability going to 1, VtDn �M
maxj .αj /−d=2
n , i.e. π.An/Dn �M

maxj .αj /−d=2
n and

Pπ.A′
n|Xn/=op.1/ if max{αj , j =1, . . . , k}<d=2:

We now prove the second part of theorem 1, where min{αj , j =1, . . . , k}>d=2, and we prove that

Pπ.Bn|Xn/=op.1/ Bn :={|f0 −fθ|� δn}∩
{

k∑
i=k0+1

pi � "n

}
, .12/

with "n small (either converging to 0 or to a fixed small constant). To prove expression (12) we need a
different lower bound of Dn, based on a different approximative set S̃n of f0, since the approximative path
based on Σk

j=k0+1pj ≈0 is not the most parsimonious in terms of prior mass. Consider t= .0, k −k0 +1, k −
k0 +2, . . . , k/ so that tk0 =k and define

S̃n ={.φt,ψt/; |γ̄i −γ0
i |�n−1=2; |si|�n−1=2; qj|γj −γ0

i |2 �n−1=2, ∀j ∈ Ii, i=1, . . . , k0}
where γ̄i = Σj∈Ii

qjγj , φt = .γj , j � k; si, i = 2, . . . , k0/ and ψt = .qj , j ∈ Ii, i � k0/. Similar computations to
those made on the terms Vt lead to (up to fixed multiplicative constants)

π.S̃n/�n−{k0−1+dk0+d=2.k−k0/}=2,
π.S̃n/�n−{k0−1+dk0+d=2.k−k0/}=2:

To find the lower bound of Dn we consider a Taylor series expansion of ln.φt,ψt/ around φt =φ0
t to order

3:

ln.φt,ψt/− ln.φ0
t ,ψt/= .φt −φ0

t /
TWn

√
n− n

2
.φt −φ0

t /
TH.φt −φ0

t /+Rn .13/

where H =−@2ln.φ0
tψt/=@φt@φ

T
t , and noting

Wn.t/=Gn

(
p0

i qj∇lgγ0
i

f0

)
, t = l+ .j −1/d, j ∈ Ii,

Wn.kd + t/=Gn

(
f 0
γt+1

−f 0
γ1

f0

)
, t =1, . . . , k0 −1,



Overfitted Mixture Models 709

and

Rn = 1
6

∑
r1, r2, r3

.φt −φ0
t /r1 .φt −φ0

t /r2 .φt −φ0
t /r3

@l3
n

@φt, r1φt, r2φt, r3

.φ̄t,ψt/, φ̄t ∈ .φt,φ0
t /:

We have

.φt −φ0
t /

TWn =
k0∑

i=1
p0

i .γ̄i −γ0
i /TGn

(∇gγ0
i

f0

)
+

k0∑
i=2

si Gn

(gγ0
i
−gγ0

1

f0

)

=Op

(
k0∑

i=1
||γ̄i −γ0

i ||+
k0∑

i=2
|si|
)

=Op.n−1=2/: .14/

The difficulty in proving that the second term in equation (13) is of order Op.1/ comes from the fact that
|φt −φ0

t | is not of order n−1=2 since, for each j ∈ I1, ||γj −γ0
1 ||= O.n−1=4/. However, simple computations

lead to
n

2
.φt −φ0

t /
TH.φt −φ0

t /=Op

{
n

(∑
i

s2
i +||γ̄i −γ0

i ||2
)}

=Op.1/:

We now study Rn. Each term including at least one si or one γk−k0+i−1 − γ0
i , i � 2, is of order Op.n−1/;

therefore we need only to consider derivatives of the log-likelihood in the form

@3ln

@γj1l1 @γj2 l2 @γj3, l3

, j1, j2, j3 ∈ I1:

Straightforward computations imply that, for all l1, l2, l3 �d,

∑
j1, j2, j3∈I1

.γj1l1 −γ0
i2 l1

/.γj2 l2 −γ0
i2 l2

/.γj3l3 −γ0
i3l3

/
@3ln

@γj1l1 @γj2 l2 @γj3, l3

=Op

{
n

(
||γ̄1 −γ0

1 ||
∑
j∈I1

||γj −γ0
1 ||2 +n−1=2 ∑

j∈I1

||γj −γ0
1 ||3 +∑

j∈I1

||γj −γ0
1 ||4
)}

under the assumption that, for all i=1, . . . , k0,

F0

{
sup

|γ−γ0
i |�δ

(
|D4gγ |
gγ

)}
<∞:

Finally, uniformly over S̃n, ln.φt,ψt/− ln.φ0
t ,ψt/=Op.1/ and using similar computation to that in the case

d=2 > maxj.αj/, for all "> 0 there exists C" > 0 such that

Pn
0 .Dn <n−{dk0+k0−1+d.k−k0/=2}=2C"/� ":

We then bound π.Bn/. The arguments that were used in the control of π.An/ imply that π.Bn/ is bounded
by the prior on the set constraint by, for all t,

|si|� δn, ||∑
j∈Ii

qjγj −γ0
i ||� δn qti+j � "n, j =2, . . . , ti+1 −1, ∀i=1, . . . , k0,

qj||γj −γ0
i ||2 � δn ∀j ∈ Ii, i=1, . . . , k0 and

∑
j�tk0 +1

pj � δn:

The prior probability of such a set is bounded by a term of order

δ
dk0+k0−1+d.tk0 −k0/=2+Σj�tk0

+1ασ.j/

n "
ΣiΣ

ti+1
j=2 .ασ.j/−d=2/

n

so Pπ.Bn|Xn/�" if "n �".δn=
√

n/a for an appropriate value of a. Hence if δn =n−1=2 it is enough to choose
"n = " small; otherwise "n must be a power of log.n/−1.
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