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Abstract

The key operation in Bayesian inference is to compute high-dimensional
integrals. An old approximate technique is the Laplace method or approxi-
mation, which dates back to Pierre-Simon Laplace (1774). This simple idea
approximates the integrand with a second-order Taylor expansion around
the mode and computes the integral analytically. By developing a nested
version of this classical idea, combined with modern numerical techniques
for sparse matrices, we obtain the approach of integrated nested Laplace
approximations (INLA) to do approximate Bayesian inference for latent
Gaussian models (LGMs). LGMs represent an important model abstrac-
tion for Bayesian inference and include a large proportion of the statistical
models used today. In this review, we discuss the reasons for the success of
the INLA approach, the R-INLA package, why it is so accurate, why the ap-
proximations are very quick to compute, and why LGMs make such a useful
concept for Bayesian computing.

395

Click here to view this article's
online features:

 

• Download figures as PPT slides
• Navigate linked references
• Download citations
• Explore related articles
• Search keywords

ANNUAL 
REVIEWS Further

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

17
.4

:3
95

-4
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
R

ic
e 

U
ni

ve
rs

ity
 o

n 
03

/2
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-054045


ST04CH18-Rue ARI 8 February 2017 10:5

1. INTRODUCTION

A key obstacle in Bayesian statistics is to actually do the Bayesian inference. From a mathematical
point of view, the inference step is easy, transparent, and defined by first principles: We simply
update prior beliefs about the unknown parameters with available information in observed data,
and obtain the posterior distribution for the parameters. Based on the posterior, we can compute
relevant statistics for the parameters of interest, including marginal distributions, means, variances,
quantiles, credibility intervals, et cetera. In practice, this is much easier said than done.

The introduction of simulation-based inference, through the idea of Markov chain Monte
Carlo (MCMC) (Robert & Casella 1999), hit the statistical community in the early 1990s and
represented a major breakthrough in Bayesian inference. MCMC provided a general recipe to
generate samples from posteriors by constructing a Markov chain with the target posterior as
the stationary distribution. This made it possible (in theory) to extract and compute whatever
one could wish for. Additional major developments have paved the way for popular user-friendly
MCMC tools, such as WinBUGS (Spiegelhalter et al. 1995), JAGS (Plummer 2016), and the new
initiative Stan (Stan Development Team 2015), which uses Hamiltonian Monte Carlo. Armed
with these and similar tools, Bayesian statistics has quickly grown in popularity, and it is now well
represented in all the major research journals in all branches of statistics.

In our opinion, however, from the point of view of applied users, the impact of the Bayesian
revolution has been less apparent. This is not a statement about how Bayesian statistics itself
is viewed by that community, but about its rather cumbersome inference, which still requires a
large amount of CPU—and hence human—time, as well as tweaking of simulation and model
parameters to get it right. Re-running many alternative models becomes even more cumbersome,
making the iterative process of model building in statistical analysis impossible (Box & Tiao 1973,
section 1.1.4). For this reason, simulation-based inference (and hence, in most cases, also Bayesian
statistics) has too often been avoided as being practically infeasible.

In this article, we review a different take on doing Bayesian inference that recently has facilitated
the increased use of Bayesian modeling within the community of applied users. This approach
is restricted to the specific class of latent Gaussian models (LGMs) which, as will be clear soon,
includes a wide variety of commonly applied statistical models, making this restriction less limiting
than it might appear at first sight. The crucial point here is that we can derive integrated nested
Laplace approximation (INLA) methodology for LGMs, a deterministic approach to approximate
Bayesian inference. INLA performs inference within a reasonable time frame and in most cases is
both faster and more accurate than MCMC alternatives. This might seem like a contradiction to
most readers, who are used to trading speed for accuracy. The corresponding R package (R-INLA,
see http://www.r-inla.org) has turned out to be very popular in applied sciences and applied
statistics, and has become a versatile tool for quick and reliable Bayesian inference.

Recent examples of applications using the R-INLA package for statistical analysis include dis-
ease mapping (Schrödle & Held 2011a,b; Ugarte et al. 2014, 2016; Papoila et al. 2014; Goicoa
et al. 2016; Riebler et al. 2016); age-period-cohort models (Riebler & Held 2016); a study of the
evolution of the Ebola virus (Santermans et al. 2016); the relationships between access to housing,
health, and well-being in cities (Kandt et al. 2016); the prevalence and correlates of intimate part-
ner violence against men in Africa (Tsiko 2016); a search for evidence of gene expression heterosis
(Niemi et al. 2015); analysis of traffic pollution and hospital admissions in London (Halonen et al.
2016); early transcriptome changes in maize primary root tissues in response to moderate water
deficit conditions by RNA sequencing (Opitz et al. 2016); performance of inbred and hybrid geno-
types in plant breeding and genetics (Lithio & Nettleton 2015); a study of Norwegian emergency
wards (Goth et al. 2014); effects of measurement errors (Muff et al. 2015, Muff & Keller 2015,
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Kröger et al. 2016); network meta-analysis (Sauter & Held 2015); time-series analysis of geno-
typed human campylobacteriosis cases from the Manawatu region of New Zealand (Friedrich et al.
2016); modeling of parrotfish habitats (NC Roos et al. 2015); Bayesian outbreak detection (Salmon
et al. 2015); long-term trends in the number of Monarch butterflies (Crewe & Mccracken 2015);
long-term effects on hospital admission and mortality of road traffic noise (Halonen et al. 2015);
spatio-temporal dynamics of brain tumors (Iulian et al. 2015); ovarian cancer mortality (Garcı́a-
Pérez et al. 2015); the effect of preferential sampling on phylodynamic inference (Karcher et al.
2016); analysis of the impact of climate change on abundance trends in central Europe (Bowler
et al. 2015); investigation of drinking patterns in US counties from 2002 to 2012 (Dwyer-Lindgren
et al. 2015); resistance and resilience of terrestrial birds in drying climates (Selwood et al. 2015);
cluster analysis of population amyotrophic lateral sclerosis risk (Rooney et al. 2015); malaria infec-
tion in Africa (Noor et al. 2014); effects of fragmentation on infectious disease dynamics ( Jousimo
et al. 2014); soil-transmitted helminth infection in sub-Saharan Africa (Karagiannis-Voules et al.
2015); analysis of the effect of malaria control on Plasmodium falciparum in Africa between 2000
and 2015 (Bhatt et al. 2015); adaptive prior weighting in generalized regression (Held & Sauter
2016); analysis of hand, foot, and mouth disease surveillance data in China (Bauer et al. 2016);
estimation of the biomass of anchovies in the coast of Perú (Quiroz et al. 2015); and many others.

We review the key components that make up INLA in Section 2, and in Section 3 we combine
these to outline why, and in which situations, INLA works. In Section 4 we show some exam-
ples of the use of R-INLA and discuss some special features that expand the class of models that
R-INLA can be applied to. In Section 5, we discuss the challenge of choosing appropriate priors in
Bayesian methodology, and, in particular, reason why it is important to provide better suggestions
for default priors. We conclude with a general discussion and outlook in Section 6.

2. BACKGROUND ON THE KEY COMPONENTS

In this section, we review the key components of the INLA approach to approximate Bayesian
inference. We introduce these concepts using a top-down approach, starting with LGMs and
what type of statistical models may be viewed as LGMs. We also discuss the types of Gaussians/
Gaussian processes that are computationally efficient within this formulation, and illustrate Laplace
approximation to perform integration—a method that has been around for a very long time and
proves to be a key ingredient in the methodology we review here.

Owing to the top-down structure of this text, we occasionally have to mention specific concepts
before properly introducing and/or defining them—we ask the reader to bear with us in these cases.

2.1. Latent Gaussian Models

The concept of LGMs represents a very useful abstraction subsuming a large class of statistical
models, in the sense that the task of statistical inference can be unified for the entire class (Rue et al.
2009). The model class abstraction is obtained using a three-stage hierarchical model formulation,
in which observations y can be assumed to be conditionally independent, given a latent Gaussian
random field x and hyperparameters θ1,

y | x, θ1 ∼
∏
i∈I

π ( yi | xi , θ1).

The versatility of the model class relates to the specification of the latent Gaussian field:

x | θ2 ∼ N (
μ(θ2), Q−1(θ2)

)
,
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which includes all random terms in a statistical model, describing the underlying dependence
structure of the data. The hyperparameters θ = (θ1, θ2) control the latent Gaussian field and/or
the likelihood for the data, and the posterior reads

π (x, θ |y) ∝ π (θ ) π (x|θ )
∏
i∈I

π ( yi |xi , θ ). (1)

We make the following critical assumptions:

1. The number of hyperparameters |θ | is small, typically 2 to 5, but not exceeding 20.
2. The distribution of the latent field x|θ is Gaussian and required to be a Gaussian Markov

random field (GMRF) (or to be close to one) when the dimension n is high (103–105).
3. The data y are mutually conditionally independent of x and θ , implying that each observation

yi only depends on one component of the latent field, for example, xi . Most components of
x will not be observed.

These assumptions are required both for computational reasons and to ensure, with a high degree
of certainty, that the approximations we describe below are accurate.

2.2. Additive Models

Now, how do LGMs relate to other better-known statistical models? Broadly speaking, they are
an umbrella class generalizing the large number of related variants of additive and/or generalized
(linear) models. For instance, interpreting the likelihood π ( yi |xi , θ ) so that yi only depends on its
linear predictor xi yields the generalized linear model setup. We can interpret {xi , i ∈ I} as ηi (the
linear predictor), which itself is additive with respect to other effects,

ηi = μ +
∑

j

β j zi j +
∑

k

fk, jk (i ). (2)

Here, μ is the overall intercept and z are fixed covariates with linear effects {β j }. The differ-
ence between this formulation and an ordinary generalized linear model lies in the terms { fk},
which are used to represent specific Gaussian processes. We label each fk as a model component,
in which element j contributes to the ith linear predictor. Examples of model components fk

include auto-regressive time-series models, stochastic spline models and models for smoothing,
measurement error models, random effects models with different types of correlations, and spa-
tial models. We assume that the model components are a priori independent, the fixed effects
(μ, β) have a joint Gaussian prior, and the fixed effects are a priori independent of the model
components.

The key is now that the model formulation in Equation 2 and LGMs relate to the same class of
models when we assume Gaussian priors for the intercept and the parameters of the fixed effects.
The joint distribution of

x = (η, μ, β, f 1, f 2, . . .) (3)

is then Gaussian, and also nonsingular if we add a tiny noise term in Equation 2. This yields the
latent field x in the hierarchical LGM formulation. Clearly, dim(x) = n can easily get large, as
it equals the number of observations, plus the intercept(s) and fixed effects, plus the sum of the
dimension of all the model components.

The hyperparameters θ comprise the parameters of the likelihood and the model components.
A likelihood family and each model component typically have between zero and two hyperparam-
eters each. These parameters often include some kind of variance, scale, or correlation parameters.
Conveniently, the number of hyperparameters is typically small and, further, does not depend on
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the dimension of the latent field n or the number of observations. This is crucial for computa-
tional efficiency, as even with a big dataset, the number of hyperparameters remains constant and
Assumption 1 still holds.

2.3. Gaussian Markov Random Fields

In practice, the latent field not only should be Gaussian, but also should be a (sparse) GMRF;
the reader is directed to Rue & Held (2005, 2010) and Held & Rue (2010) for an introduction to
GMRFs. A GMRF x is simply a Gaussian with additional conditional independence properties,
meaning that xi and x j are conditionally independent given the remaining elements x−i j , for quite a
few {i , j }s. The simplest nontrivial example is the first-order auto-regressive model, xt = φxt−1+εt ,
t = 1, 2, . . . , m, having Gaussian innovations ε. For this model, the correlation between xt and xs

is φ|s −t|, and the resulting m × m covariance matrix is dense. However, xs and xt are conditionally
independent given x−s t , for all |s − t| > 1. In the Gaussian case, a very useful consequence of
conditional independence is that this results in zeros for pairs of conditionally independent values
in the precision matrix (the inverse of the covariance matrix). Considering GMRFs provides
a huge computational benefit, as calculations involving a dense m × m matrix are much more
costly than when a sparse matrix is used. In the auto-regressive example, the precision matrix is
tridiagonal and can be factorized in O(m) time, whereas we need O(m3) in the general dense case.
Memory requirement is also reduced from O(m2) to O(m), which makes it much easier to run
larger models. For models with a spatial structure, the cost is O(m3/2) paired with a O(m log(m))
memory requirement. In general, the computational cost depends on the actual sparsity pattern
in the precision matrix, hence it is hard to provide precise estimates.

2.4. Additive Models and Gaussian Markov Random Fields

In the construction of additive models including GMRFs, the following fact is one of the conve-
nient results that are exploited in INLA:

The joint distribution for x in Equation 3 is also a GMRF, and its precision matrix consists of sums of
the precision matrices of the fixed effects and the other model components.

We will see below that we need to form the joint distribution of the latent field many times,
as it depends on the hyperparameters θ . Hence, it is essential that this can be done efficiently,
avoiding computationally costly matrix operations. Being able to simply treat the joint distribution
as a GMRF with a precision matrix that is easy to compute is one of the key reasons why the INLA
approach is so efficient. Also, the sparse structure of the precision matrix boosts computational
efficiency, compared with operations on dense matrices.

To illustrate more clearly what happens, let us consider the following simple example,

ηi = μ + βzi + f1 j1(i ) + f2 j2(i ) + εi , i = 1, . . . , n, (4)

where we have added a small amount of noise εi . The two model components f1 j1(i ) and f2 j2(i ) have
sparse precision matrices Q1(θ ) and Q2(θ ) of dimension m1 × m1 and m2 × m2, respectively. Let
τμ and τβ be the (fixed) prior precisions for μ and β. We can express Equation 4 using matrices

η = μ1 + βz+ A1 f 1 + A2 f 2 + ε.

Here, A1 (and similarly for A2) is a n × m1 sparse matrix, which is zero except for exactly one in
each row. The joint precision matrix of (η, f 1, f 2, β, μ) is straightforward to obtain by rewriting
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exp
(

− τε

2
(η − (μ1 + βz+ A1 f 1 + A2 f 2))T (η − (μ1 + βz+ A1 f 1 + A2 f 2))

− τμ

2
μ2 − τβ

2
β2 − 1

2
f T

1 Q1(θ ) f 1 − 1
2

f T
2 Q2(θ ) f 2

)
into

exp
(

−1
2

(η, f 1, f 2, β, μ)T Qjoint(θ )(η, f 1, f 2, β, μ)
)

where

Qjoint(θ ) =

⎡⎢⎢⎢⎢⎢⎣
τε I τε A1 τε A2 τε I z τε I1

Q1(θ ) + τε A1 AT
1 τε A1 AT

2 τε A1 z τε A11
Q2(θ ) + τε A2 AT

2 τε A2 z τε A21
sym. τβ + τε zT z τε zT 1

τμ + τε1T 1

⎤⎥⎥⎥⎥⎥⎦.

The dimension is n + m1 + m2 + 2. Concretely, the convenient result mentioned above implies
that the only matrices that need to be multiplied are the A-matrices, which are extremely sparse
and contain only one nonzero element in each row. These matrix products do not depend on θ

and hence only need to be computed once. The joint precision matrix only depends on θ through
Q1(θ ) and Q2(θ ), and as θ change, the computational cost of recomputing Qjoint(θ ) is negligible.

The sparsity of Qjoint(θ ) illustrates how the additive structure of the model facilitates compu-
tational efficiency. For simplicity, assume n = m1 = m2, and denote by e1 and e2 the average
number of nonzero elements in a row of Q1(θ ) and Q2(θ ), respectively. An upper bound for the
number of nonzero terms in Qjoint(θ ) is n(19 + e1 + e2) + 4. Approximately, this gives on average
only (19 + e1 + e2)/3 nonzero elements for a row in Qjoint(θ ), which is very sparse.

2.5. Laplace Approximations

The Laplace approximation or method is an old technique for the approximation of integrals; see
Barndorff-Nielsen & Cox (1989, chapter 3.3) for a general introduction. The setting is as follows:
The aim is to approximate the integral,

In =
∫

x
exp(n f (x)) dx

as n → ∞. Let x0 be the point in which f (x) has its maximum, then

In ≈
∫

x
exp

(
n
(

f (x0) + 1
2

(x − x0)2 f ′′(x0)
))

dx (5)

= exp(n f (x0))

√
2π

−n f ′′(x0)
= Ĩn. (6)

The idea is simple but powerful: Approximate the target with a Gaussian, matching the mode
and the curvature at the mode. By interpreting n f (x) as the sum of log-likelihoods and x as the
unknown parameter, the Gaussian approximation will be exact as n → ∞, if the central limit
theorem holds. The extension to higher-dimensional integrals is immediate, and the error turns
out to be

In = Ĩn
(
1 + O(n−1)

)
.

This is a good result for two reasons. The error is relative and with rate n−1, as opposed to an
additive error and a rate n−1/2, which are common in simulation-based inference.
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The Laplace approximation used to be a key tool for doing high-dimensional integration in
pre-MCMC times but quickly went out of fashion when MCMC entered the stage. But how does
it relate to what we endeavor to do here? Let’s assume that we would like to compute a marginal
distribution π (γ1) from a joint distribution π (γ ):

π (γ1) = π (γ )
π (γ −1|γ1)

≈ π (γ )
πG(γ −1; μ(γ1), Q(γ1))

∣∣∣∣
γ −1=μ(γ1)

,
(7)

where we have exploited the fact that we approximate π (γ −1|γ1) with a Gaussian. In the context of
the LGMs, we have γ = (x, θ ). Tierney & Kadane (1986) show that if π (γ ) ∝ exp(n fn(γ )), that is, if
fn(γ ) is the average log likelihood, the relative error of the normalized approximation Equation 7,
within a O(n−1/2) neighborhood of the mode, is O(n−3/2). In other words, if we have n replicated
data from the same parameters γ , we can compute posterior marginals with a relative error of
O(n−3/2), assuming the numerical error to be negligible. This is an extremely positive result, but
unfortunately the underlying assumptions usually do not hold:

1. Instead of replicated data from the same model, we may have one replicate from one model
(as is common in spatial statistics) or several observations from similar models.

2. The implicit assumption in the above result is also that |γ | is fixed as n → ∞. However,
there is only one realization for each observation/location in the random effect(s) in the
model, implying that |γ | grows with n.

Is it still possible to gain insight into when the Laplace approximation would give good results,
even if these assumptions do not hold? First, let us replace replicated observations from the same
model with several observations from similar models, where we deliberately use the term “similar”
in a loose sense. We can borrow strength across variables that we a priori assume to be similar,
for example, by smoothing over time or over space. In this case, the resulting linear predictors for
two observations could differ in only one realization of the random effect. In addition, borrowing
strength and smoothing can reduce the effect of the model dimension growing with n, because
the effective dimension can then grow much more slowly with n.

Another way to interpret the accuracy in computing posterior marginals using Laplace approx-
imations is to not look at the error rate but rather at the implicit constant upfront. If the posterior
is close to a Gaussian density, the results will be more accurate compared with a density that is very
different from a Gaussian. This is similar to the convergence for the central limit theorem where
convergence is faster if relevant properties such as unimodality, symmetry, and tail behavior are
satisfied; see, for example, Baghishani & Mohammadzadeh (2012). Similarly, in the context here,
unimodality is necessary because we approximate the integrand with a Gaussian. Symmetry helps
because the Gaussian distribution is symmetric, and heavier tails will be missed by the Gaussian.
For example, assume

exp(n fn(γ )) =
∏

i

Poisson( yi ; λ = exp(γ1 + γ2zi ))

with centered covariates z. We then expect better accuracy for π (γ1), having high values for
yi compared with low low values. With high counts, the Poisson distribution is approximately
Gaussian and almost symmetric. Low counts are more challenging, because the likelihood for
yi = 0 and zi = 0 is proportional to exp(− exp(γ1)), which has a maximum value at γ1 = −∞. The
situation is similar for binomial data of size m, where low values of m are more challenging than
high values of m. Theoretical results for the current rather vague context are difficult to obtain and
constitute a largely unsolved problem (see, for example, Shun & McCullagh 1995, Kauermann
et al. 2009, Ogden 2016).
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Figure 1
The true marginal (solid blue line), the Laplace approximation (dashed red line) and the Gaussian
approximation (dot-dashed orange line).

Let us now discuss a simplistic, but realistic, model in two dimensions x = (x1, x2)T, where

π (x) ∝ exp

(
−1

2
xT

[
1 ρ

ρ 1

]
x

)
2∏

i=1

exp(c xi )
1 + exp(c xi )

(8)

for a constant c > 0 and ρ ≥ 0. This is the same functional form as we get from two Bernoulli
successes, using a logit-link. Using the constant c is an alternative to scaling the Gaussian part,
and the case where ρ < 0 is similar. The task now is to approximate π (x1) = π (x1, x2)/π (x2|x1),
using Equation 7. Here, the Gaussian approximation is indexed by x1, and we use one Laplace
approximation for each value of x1. The likelihood term has a mode at (∞, ∞), hence the posterior
is a compromise between this and the Gaussian prior centered at (0, 0).

We first demonstrate that even if the Gaussian approximation matching the mode of π (x) is
not so good, the Laplace approximation, which uses a sequence of Gaussian approximations, can
do much better. Let ρ = 1/2 and c = 10 (which is an extreme value). The resulting marginal for
x1 (solid), the Laplace approximation of it (dashed) and Gaussian approximation (dot-dashed), are
shown in Figure 1. The Gaussian approximation fails both to locate the marginal correctly and
also, of course, it also fails to capture the skewness that is present. In spite of this, the sequence
of Gaussian approximations used in the Laplace approximation performs much better and only
seems to run into slight trouble where the curvature of the likelihood changes abruptly.

An important feature of Equation 7 is its properties in the limiting cases ρ → 0 and ρ → 1.
When ρ = 0, x1 and x2 become independent and π (x2|x1) does not depend on x1. Hence,
Equation 7 is exact up to a numerical approximation of the normalizing constant. In the other
limiting case, ρ → 1, π (x2|x1) is the point mass at x2 = x1, and Equation 7 is again exact up to
numerical error. This illustrates the convenient property of Equation 7, being exact in the two
limiting cases of weak and strong dependence, respectively. This indicates that the approximation
should not fail too badly for intermediate dependence. Figure 2 illustrates the Laplace approx-
imation and the true marginals, using ρ = 0.05, 0.4, 0.8 and 0.95, and c = 10. For ρ = 0.05
(Figure 2a) and ρ = 0.95 (Figure 2d ), the approximation is almost perfect, whereas the error is
largest for intermediate dependence where ρ = 0.4 (Figure 2b) and ρ = 0.8 (Figure 2c).
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Figure 2
The true marginal (solid blue line) and the Laplace approximation (dashed red line), for ρ = 0.05 (a), 0.4 (b), 0.8
(c) and 0.95 (d ).

3. PUTTING IT ALL TOGETHER: INLA

With all the key components at hand, we now can put all these together to illustrate how they
are combined to form INLA. The main aim of Bayesian inference is to approximate the posterior
marginals

π (θ j |y), j = 1, . . . , |θ |, π (xi |y), i = 1, . . . , n. (9)

Our approach is tailored to the structure of LGMs, where |θ | is low-dimensional, x|θ is a GMRF,
and the likelihood is conditional independent in the sense that yi only depends on one xi and θ .
From the discussion in Section 2.5, we know that we should aim to apply Laplace approximation
only to near-Gaussian densities. For LGMs, it turns out that we can reformulate our problem
as series of subproblems that allows us to use Laplace approximations on these. To illustrate the
general principal, consider an artificial model

ηi = g(β)u j (i ),

where yi |ηi ∼ Poisson(exp(ηi )), i = 1, . . . , n, β ∼ N (0, 1), g(·) is some well-behaved monotone
function, and u ∼ N (0, Q−1). The index mapping j (i ) is made such that the dimension of u is
fixed and does not depend on n, and all u j s are observed roughly the same number of times.
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Computation of the posterior marginals for β and all u j is problematic, because we have a product
of a Gaussian and a non-Gaussian (which is rather far from a Gaussian). Our strategy is to break
down the approximation into smaller subproblems and only apply the Laplace approximation
where the densities are almost Gaussian. The key idea is to use conditioning, here on β. Then

π (β|y) ∝ π (β)
∫ n∏

i=1

π
(

yi |λi = exp
(
g(β)u j (i )

))× π (u) du. (10)

The integral we need to approximate should be close to Gaussian, because the integrand is a
Poisson-count correction of a Gaussian prior. The marginals for each u j can be expressed as

π (u j |y) =
∫

π (u j |β, y) × π (β|y) dβ. (11)

Note that we can compute the integral directly, because β is one-dimensional. Similar to
Equation 10, we have that

π (u|β, y) ∝
n∏

i=1

π
(

yi |λi = exp
(
g(β)u j (i )

))× π (u), (12)

which should be close to a Gaussian. Approximating π (u j |β, y) involves approximation of the
integral of this density in one dimension less, because u j is fixed. Again, this is close to Gaussian.

The key lesson learned is that we can break down the problem into three subproblems.

1. Approximate π (β|y) using Equation 10.
2. Approximate π (u j |β, y), for all j and for all required values of β, from Equation 12.
3. Compute π (u j |y) for all j using the results from the two first steps, combined with numerical

integration Equation 11.

The price we have to pay for taking this approach is increased complexity; for example, step 2
needs to be computed for all values of β that are required. We also need to integrate out the βs
in Equation 11, numerically. If we remain undeterred by the increased complexity, the benefit of
this procedure is clear; we only apply Laplace approximations to densities that are near-Gaussian,
replacing complex dependencies with conditioning and numerical integration.

The big question is whether we can pursue the same principle for LGMs, and whether we
can make it computationally efficient by accepting appropriate trade-offs that allow us to still be
sufficiently exact. The answer is yes in both cases. The strategy outlined above can be applied
to LGMs by replacing β with θ , and u with x, and then deriving approximations to the Laplace
approximations and the numerical integration. The resulting approximation is fast to compute,
with little loss of accuracy. We now discuss the main ideas for each step—skipping some practical
and computational details that are somewhat involved but still relatively straightforward, using
every trick in the book for GMRFs.

3.1. Approximating the Posterior Marginals for the Hyperparameters

Because the aim is to compute a posterior for each θ j , it is tempting to use the Laplace ap-
proximation directly, which involves approximating the distribution of (θ− j , x)|(y, θ j ) with a
Gaussian. Such an approach will not be very successful, because the target will never be very
close to Gaussian; it will typically involve triplets such as τ xi x j . Instead we can construct an
approximation to

π (θ |y) ∝ π (θ )π (x|θ )π (y|x, θ )
π (x|θ , y)

, (13)
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in which the Laplace approximation requires a Gaussian approximation of the denominator

π (x|y, θ ) ∝ exp

(
−1

2
xT Q(θ )x +

∑
i

log π ( yi |xi , θ )

)
(14)

= (2π )−n/2|P(θ )|1/2 exp
(

−1
2

(x − μ(θ ))T P(θ )(x − μ(θ ))
)

. (15)

Here, P(θ ) = Q(θ ) + diag(c(θ )), and μ(θ ) is the location of the mode. The vector c(θ ) contains
the negative second derivatives of the log-likelihood at the mode, with respect to xi . There are
two important aspects of Equation 15.

1. It is a GMRF with respect to the same graph as from a model without observations y,
so computationally it does not cost anything to account for the observations because their
impact is a shift in the mean and the diagonal of the precision matrix.

2. The approximation is likely to be quite accurate because the impact of conditioning on
the observations is only on the diagonal; it shifts the mean, reduces the variance, and
might introduce some skewness into the marginals etc. Importantly, the observations do
not change the Gaussian dependency structure through the terms xi x j Qi j (θ ), as these are
untouched.

Because |θ | is of low dimension, we can derive marginals for θ j |y directly from the approximation to
θ |y. Thinking traditionally, this might be costly, because every new θ would require an evaluation
of Equation 15, and the cost of numerical integration would still be exponential in |θ |. Luckily,
the problem is somewhat more well behaved, because the latent field x introduces quite some
uncertainty and more smooth behavior on the θ marginals.

In situations where the central limit theorem becomes applicable, π (θ |y) will be close to a
Gaussian. We can improve this approximation using variance-stabilizing transformations of θ ,
such as using log(precisions) instead of precisions, or the Fisher transform of correlations. Ad-
ditionally, we can use the Hessian at the mode to construct almost independent linear combi-
nations (or transformations) of θ . These transformations simplify the problem, as they tend to
diminish long tails and reduce skewness, which gives much simpler and better-behaved posterior
densities.

The task of finding a quick and reliable approach to deriving all the marginal distributions from
an approximation to the posterior density (Equation 13), while keeping the number of evaluation
points low, was a serious challenge. We did not succeed on this until several years after Rue et al.
(2009), and after several failed attempts. It was hard to beat the simplicity and stability of using the
(Gaussian) marginals derived from a Gaussian approximation at the mode. However, we needed
to do better, as these Gaussian marginals were not sufficiently accurate. The default approach
used now is outlined in Martins et al. (2013, section 3.2), and involves correction of local skewness
(in terms of difference in scale) and an integration-free method to approximate marginals from a
skewness-corrected Gaussian. How this is technically achieved is somewhat involved, and we refer
to Martins et al. (2013) for details. In our experience, we now balance accuracy and computational
speed well, with an improvement over Gaussian marginals while still being exact in the Gaussian
limit.

In some situations, our approximation to Equation 13 can be a bit off. This typically happens
in cases with little smoothing and/or no replications, for example, when ηi = μ + βzzi + ui , for a
random-effect u, and a binary likelihood (Sauter & Held 2016). With vague priors, models such as
this verge on being improper. Ferkingstad & Rue (2015) discuss these cases and derive a correction
term which clearly improves the approximation to π (θ |y).
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3.2. Approximating the Posterior Marginals for the Latent Field

We will now discuss how to approximate the posterior marginals for the latent field. For linear
predictors with no attached observations, the posterior marginals are also the basis to derive the
predictive densities, as the linear predictor itself is a component of the latent field. Similar to
Equation 11, we can express the posterior marginals as

π (xi |y) =
∫

π (xi |θ , y) π (θ |y) dθ , (16)

hence we are faced with two more challenges.

1. We need to integrate over π (θ |y), but the computational cost of standard numerical in-
tegration is exponential in the dimension of θ . We have already ruled out such an ap-
proach in Section 3.1, because it was too costly computationally, except when the dimension
is low.

2. We need to approximate π (xi |θ , y) for a subset of all i = 1, . . . , n, where n can be (very)
large, such as in the range of 103 to 105. A standard application of the Laplace approximation,
which involves location of the mode and factorization of a (n − 1) × (n − 1) matrix many
times for each i , will simply be too demanding.

The key to success is to come up with efficient approximate solutions for each of these
problems.

Classical numerical integration is only feasible in lower dimensions. If we want to use 5 inte-
gration points in each dimension, the cost would be 5k to cover all combinations in k dimensions,
which is 125 (k = 3) and 625 (k = 4). Using only 3 integration points in each dimension, we
get 81 (k = 4) and 729 (k = 6). This is close to the practical limits. Beyond these limits we
cannot aim to do accurate integration, but should rather aim for something that is better than
avoiding the integration step, such as an empirical Bayes approach which just uses the mode. In
dimensions >2, we borrow ideas from central composite design (Box & Wilson 1951) and use in-
tegration points on a sphere around the center; Figure 3 illustrates the procedure in dimension 2
(even though we do not suggest using this approach in dimensions 1 and 2). The integrand is
approximately spherical (after rotation and scaling), and the integration points will approximately
be located on an appropriate level set for the joint posterior of θ . We can weight the spherical
integration points equally, and determine the relative weight with the central point requiring the
correct expectation of θT θ , if the posterior is standard Gaussian (Rue et al. 2009, section 6.5).
It is our experience that this approach balances computational costs and accuracy well, and it is
applied as the default integration scheme. More complex integration schemes could be used with
increased computational costs.

For the second challenge, we need to balance the need for improved approximations beyond
the Gaussian for π (xi |θ , y) with the fact that we (potentially) need to do this n times. Because n
can be large, we cannot afford to do heavy computations for each i to improve on the Gaussian
approximations. The default approach is to compute a Taylor expansion around the mode of the
Laplace approximation, which provides a linear and a cubic correction term to the (standardized)
Gaussian approximation,

log π (xi |θ , y) ≈ −1
2

x2
i + bi (θ )xi + 1

6
c i (θ )x3

i . (17)

We match a skew-Normal distribution (Azzalini & Capitanio 1999) to Equation 17, such that the
linear term provides a correction term for the mean, while the cubic term provides a correction
for skewness. This means that we approximate Equation 16 with a mixture of skew-Normal
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Figure 3
The contours of a posterior marginal for (θ1, θ2) and the associated integration points (blue dots).

distributions. This approach, termed simplified Laplace approximation, gives a very good trade-
off between accuracy and computational speed.

Additional to posterior marginals, we can also provide estimates of the deviance information
criterion (Spiegelhalter et al. 2002), Watanabe-Akaike information criterion (Wantanabe 2010,
Gelman et al. 2014), and marginal likelihood and conditional predictive ordinates (Held et al.
2010). Other predictive criteria such as the ranked probability score or the Dawid-Sebastiani score
(Gneiting & Raftery 2007) can also be derived in certain settings (Riebler et al. 2012, Schrödle
et al. 2012). Martins & Rue (2014) discuss how the INLA-framework can be extended to a class
of near-Gaussian latent models.

4. THE R-INLA PACKAGE: EXAMPLES

The R-INLA package (see http://www.r-inla.org) provides an implementation of the INLA ap-
proach, including standard and nonstandard tools to define models based on the formula concept
in R. In this section, we present some examples of basic usage and some special features of R-INLA.

4.1. A Simple Example

We first show the usage of the package through a simple simulated example,

y|η ∼ Poisson(exp(η))

where ηi = μ + βwi + u j (i ), i = 1, . . . , n, w are covariates, u ∼ Nm(0, τ−1 I ), and j (i ) is a known
mapping from 1 : n to 1 : m. We generate data as follows:
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set.seed(123456L)

n = 50; m = 10

w = rnorm(n, sd = 1/3)

u = rnorm(m, sd = 1/4)

intercept = 0; beta = 1

idx = sample(1:m, n, replace = TRUE)

y = rpois(n, lambda = exp(intercept + beta * w + u[idx]))

giving

> table(y, dnn=NULL)

0 1 2 3 5

17 18 9 5 1

We use R-INLA to do the inference for this model, by

library(INLA)

my.data = data.frame(y, w, idx)

formula = y ~ 1 + w + f(idx, model="iid"),

r = inla(formula, data = my.data, family = "poisson")

The formula defines how the response depends on covariates, as usual, but the term
f(idx, model="iid") is new. It corresponds to the function f that we introduced above in
Equation 2, one of many implemented GMRF model components. The iid term refers to the
N (0, τ−1 I ) model, and idx is an index that specifies which elements of the model component go
into the linear predictor.

Figure 4a shows three estimates of the posterior marginal of u1. The solid line is the default
estimate, the simplified Laplace approximation, as outlined in Section 3 (and with the R commands
given above). The dashed line is the simpler Gaussian approximation which avoids integration
over θ ,
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Figure 4
(a) The default estimate (simplified Laplace approximation) of the posterior marginal for u1 (blue solid ); a simplified estimate, i.e., the
Gaussian approximation (red dashed ); and the best possible Laplace approximation (orange dotted ). (b) Histogram of u1 using 105

samples produced using JAGS, together with the simplified Laplace approximation from panel a.
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r.ga = inla(formula, data = my.data, family = "poisson",

control.inla = list(strategy = "gaussian", int.strategy = "eb"))

The dotted line represents the (almost) true Laplace approximations and accurate integration over
θ , and is the best approximation we can provide with the current software,

r.la = inla(formula, data = my.data, family = "poisson",

control.inla = list(strategy = "laplace",

int.strategy = "grid", dz=0.1, diff.logdens=20))

It is hard to see, as it is almost entirely covered by the solid line, meaning that our mixture of
skew-Normals is very close to being exact in this example. We also note that by integrating out θ ,
the uncertainty increases, as it should. To compare the approximations with a simulation-based
approach, Figure 4b shows the corresponding histogram for 105 samples using JAGS, together
with the default estimate from Figure 4a. The fit is quite accurate. The CPU time used by R-INLA
with default options was approximately 0.16 seconds on a standard laptop, where 2/3 of this time
was used for administration.

4.2. A Less Simple Example Including Measurement Error

We continue with a measurement error extension of the previous example, assuming that the
covariate w is only observed indirectly through z, where

zi | . . . ∼ Binomial

(
m, prob = 1

1 + exp(−(γ + wi ))

)
, i = 1, . . . , n,

with intercept γ. In this case, the model needs to be specified using two likelihoods and also a
special feature called copy. Each observation can have its own type of likelihood (i.e., family),
which is coded using a matrix (or list) of observations, where each column represents one family.
A linear predictor can only be associated with one observation. The copy feature allows us to have
additional identical copies of the same model component in the formula, and we have the option
to scale it as well. An index NA is used to indicate if there is no contribution to the linear predictor,
and this is used to zero out contributions from model components. This is done in the code below:

## generate observations that we observe for ‘w’

m = 2

z = rbinom(n, size = m, prob = 1/(1+exp(-(0 + w))))

## create the response. since we have two families, poisson and

## binomial, we use a matrix, one column for each family

Y = matrix(NA, 2*n, 2)

Y[1:n, 1] = y

Y[n + 1:n, 2] = z

## we need one intercept for each family. this is an easy way to achieve that

Intercept = as.factor(rep(1:2, each=n))

## say that we have ‘beta*w’ only for ‘y’ and ‘w’ only for ‘z’. the formula

## defines the joint model for both the observations, ‘y’ and ‘z’

NAs = rep(NA, n)

idx = c(NAs, 1:n)

idxx = c(1:n, NAs)

formula2 = Y ~ -1 + Intercept + f(idx, model="iid") +
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f(idxx, copy="idx", hyper = list(beta = list(fixed = FALSE)))

## need to use a ‘list’ since ‘Y’ is a matrix

my.data2 = list(Y=Y, Intercept = Intercept, idx = idx, idxx = idxx)

## we need to define two families and give the ‘size’ for the binomial

r2 = inla(formula2, data = my.data2, family = c("poisson", "binomial"),

Ntrials = c(NAs, rep(m, n)))

We refer to Muff et al. (2015) for more details on measurement error models using INLA, and to
the specific LGMs termed mec and meb that are available in R-INLA to facilitate the implementation
of classical error models and Berkson error models, respectively.

4.3. A Spatial Example

The R-INLA package has extensive support for spatial Gaussian models, including intrinsic GMRF
models on regions (often called CAR models; Hodges 2013, chapter 5.2) and a subclass of con-
tinuously indexed Gaussian field models. Of particular interest are Gaussian fields derived from
stochastic partial differential equations (SPDEs). The simplest cases are Matérn fields in dimension
d , which can be described as the solution to

(κ2 − )α/2(τ x(s)) = W(s), (18)

where  is the Laplacian, κ > 0 is the spatial scale parameter, α controls the smoothness, τ

controls the variance, and W(s) is a Gaussian spatial white noise process. Whittle (1954, 1963)
shows that its solution is a Gaussian field with a Matérn covariance function having smoothness
ν = α − d/2. The smoothness is usually kept fixed based on prior knowledge of the underlying
process. A formulation of Matérn fields as solutions to Equation 18 might seem unnecessarily
complicated, because we already know the solution. However, Lindgren et al. (2011) showed
that by using a finite basis-function representation of the continuously indexed solution, one can
derive (in analogy to the well-known finite element method) a local representation with Markov
properties. This means that the joint distribution for the weights in the basis-function expansion
is a GMRF, and the distribution follows directly from the basis functions and the triangulation
of space. The main implication of this result is that it allows us to continue to think about and
interpret the model using marginal properties such as covariances, but at the same time we can
do fast computations because the Markov properties make the precision matrix very sparse. It
also allows us to add this component in the R-INLA framework, like any other GMRF model
component.

The dual interpretation of the Matérn field, both using covariances and also using its Markov
properties, is very convenient from both a computational and also a statistical modeling point of
view (Simpson et al. 2011, 2012; Lindgren & Rue 2015). The same ideas also apply to nonstationary
Gaussian fields using nonhomogeneous versions of an appropriate SPDE (Lindgren et al. 2011;
Yue et al. 2014; Fuglstad et al. 2015a,b), Gaussian fields that treat land as a barrier to spatial
correlation (Bakka et al. 2016), multivariate random fields (Hu & Steinsland 2016), log-Gaussian
Cox processes (Simpson et al. 2016a), and in the near future also to nonseparable space-time
models.

We end this section with a simple example of spatial survival analysis taken from Henderson
et al. (2002), studying spatial variation in leukemia survival data in northwest England in the period
1982–1998. The focus of the example is to see how, and how easily, the spatial model integrates
into the model definition (Martino et al. 2010). We therefore omit further details about the dataset
and refer to the original article.
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a b

Figure 5
(a) The area of northwest England for the leukemia study, where the (post-code) locations of the events are
shown as dots. (b) Overlay of the mesh used for the stochastic partial differential equation model.

First, we need to load the data and create the mesh, that is, a triangulation of the area of interest
to represent the finite dimensional approximation to Equation 18.

library(INLA)

data(Leuk)

loc <- cbind(Leuk$xcoord, Leuk$ycoord)

bnd1 <- inla.nonconvex.hull(loc, convex=0.05)

bnd2 <- inla.nonconvex.hull(loc, convex=0.25)

mesh <- inla.mesh.2d(loc, boundary=list(bnd1, bnd2),

max.edge=c(0.05, 0.2), cutoff=0.005)

Figure 5a displays the study area and the locations of the events, and Figure 5b shows the
associated mesh with respect to which we define the SPDE model. We use an additional rougher
mesh to reduce boundary effects. The next step is to create a mapping matrix from the mesh
onto the locations where the data are observed. Then we define the SPDE model, to define
the statistical model including covariates such as sex, age, white blood-cell counts (wbc), and the
Townsend deprivation index (tpi), and call a bookkeeping function which keeps the indices in
correct order. Finally, we call inla() to do the analysis, assuming a Weibull likelihood. Note that
application of a Cox proportional hazard model will give similar results.

A <- inla.spde.make.A(mesh, loc)

spde <- inla.spde2.matern(mesh, alpha=2) ## alpha=2 is the default choice

formula <- inla.surv(time, cens) ~ 0 + a0 + sex + age + wbc + tpi +

f(spatial, model=spde)

stk <- inla.stack(data=list(time=Leuk$time, cens=Leuk$cens), A=list(A, 1),

effect=list(list(spatial=1:spde$n.spde),

data.frame(a0=1, Leuk[,-c(1:4)])))

r <- inla(formula, family="weibull", data=inla.stack.data(stk),

control.predictor=list(A=inla.stack.A(stk)))

Figure 6a shows the estimated spatial effect, with the posterior mean (left panel ), and posterior
standard deviation (right panel ).
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–0.4 –0.2 0.0 0.2 0.25 0.30 0.35 0.40
Mean Standard deviation

Figure 6
The spatial effect in the model: (left panel ) mean, (right panel) standard deviation.

4.4. Special Features

In addition to standard analyses, the R-INLA package also contains nonstandard features that boost
the complexity of models that can be specified and analyzed. Here, we give a short summary of
these; for more details, the reader is directed to Martins et al. (2013).

� replicate: Each model component given as a f()-term can be replicated, creating nrep

iid replications with shared hyperparameters. For example,

f(time, model="ar1", replicate=person)

defines one AR(1) model for each person sharing the same hyperparameters.
� group: Each model component given as a f()-term can be grouped, creating ngroup de-

pendent replications with a separable correlation structure. To create a separable space-time
model, with an AR(1) dependency in time, we can specify

f(space, model=spde, group=time, control.group = list(model = "ar1"))

Riebler et al. (2012) used grouped smoothing priors in R-INLA to impute missing mortality
rates for a specific country by taking advantage from similar countries where these data are
available. The authors provide the corresponding R code in the supplementary material. We
can both group and replicate model components.

� A-matrix: We can create a second layer of linear predictors where η is defined by theformula,
but η∗ = Aη is connected to the observations. Here, A is a constant (sparse) matrix; see the
above spatial example.

� Linear combinations: We can also compute posterior marginals of v = Bx, where x is
the latent field and B is a fixed matrix. This could, for example, be β1 − β2 for two fixed
effects, or any other linear combinations. Here is an example computing the posterior for
the difference between two linear effects, βu − βv :

lc = inla.make.lincomb(u=1, v=-1)

r = inla(y ~ u + v, data = d, lincomb = lc)

� Remote server: It is easy to set up a remote Mac OSX/Linux server to host the computations
while doing the R work at your local laptop. The job can be submitted and the results can be
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retrieved later, or it can be used interactively. This is a very useful feature for larger models.
It also ensures that computational servers will in fact be used, because we can work in a local
R session but use a remote server for the computations. Here is an example running the
computations on a remote server:

r = inla(formula, family, data = data, inla.call = "remote")

To submit a job we specify

r = inla(formula, family, data = data, inla.call = "submit")

and we can check the status and retrieve the results when the computations are done, by

inla.qstat(r)

r = inla.qget(r)

� R support: Although the core INLA program is written in C, it is possible to pass a user-
defined latent model component written in R and use that as any other latent model com-
ponent. The R code will be evaluated within the C program. This is very useful for more
specialized model components or reparameterizations of existing ones, even though it will
run more slowly than a proper implementation in C. As a simple example, the code below
implements the model component iid, which is just independent Gaussian random effects
Nn(0, (τ I )−1). The skeleton of the function is predefined and must return the graph, Q-
matrix, initial values, mean, log normalizing constant, and log prior for the hyperparameters.

iid.model = function(cmd = c("graph", "Q", "mu", "initial",

"log.norm.const", "log.prior", "quit"),

theta = NULL, args = NULL)

{
interpret.theta = function(n, theta)

return (list(prec = exp(theta[1L])))

graph = function(n, theta)

return (Diagonal(n, x= rep(1, n)))

Q = function(n, theta) {
prec = interpret.theta(n, theta)$prec

return (Diagonal(n, x= rep(prec, n))) }
mu = function(n, theta) return (numeric(0))

log.norm.const = function(n, theta) {
prec = interpret.theta(n, theta)$prec

return (sum(dnorm(rep(0, n),

sd = 1/sqrt(prec), log=TRUE))) }
log.prior = function(n, theta) {

prec = interpret.theta(n, theta)$prec

return (dgamma(prec, shape = 1, rate = 5e-05, log=TRUE)

+ theta[1L]) }
initial = function(n, theta) return (4.0)

quit = function(n, theta) return (invisible())

val = do.call(match.arg(cmd),

args = list(n = as.integer(args$n), theta = theta))

return (val)

}
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n = 50 ## the dimension

my.iid = inla.rgeneric.define(iid.model, n=n)

Hence, we can replace f(idx,model="iid") with our own R implementation, using
f(idx, model=my.iid). For details on the format, see inla.doc("rgeneric") and
demo(rgeneric).

5. A CHALLENGE FOR THE FUTURE: PRIORS

Although the R-INLA project has been highly successful, it has also revealed some weak points in
general Bayesian methodology from a practical point of view. In particular, our main concern is
how we think about and specify priors in LGMs. We will now discuss this issue and our current
plan to provide good, sensible default priors.

Bayesian statistical models require prior distributions for all the random elements of the model.
Working within the class of LGMs, choosing prior distributions involves choosing priors for all the
hyperparameters θ in the model, because the latent field is by definition Gaussian. We deliberately
write “priors” because it is common practice to define independent priors for each θ j , whereas we
really should aim for a joint prior for all θ , when appropriate.

The ability to incorporate prior knowledge in Bayesian statistics is a great tool and potentially
very useful. However, except for cases where we do have real prior knowledge, for example, through
results from previous experiments, it is often conceptually difficult to encode prior knowledge
through probability distributions for all model parameters. Examples include priors for precision
and overdispersion parameters, or the amount of t-ness in Student’s t-distribution. Simpson et al.
(2016b) discuss these aspects in great detail.

In R-INLA, we have chosen to provide default prior distributions for all parameters. We admit
that currently these have been chosen partly based on the priors that are commonly used in the
literature and partly out of the blue. It might be argued that this is not a good strategy, and that
we should force the user to provide the complete model including the joint prior. This is a valid
point, but all priors in R-INLA can easily be changed, allowing the user to define any arbitrary
prior distribution. So the whole argument can be reduced to a question of convenience.

Do we have a “Houston, we have a problem" situation with priors? Looking at the current
practice within the Bayesian society, we came to the conclusion that we do. In the following, we
argue for this through a simple example, showing what can go wrong, how we can think about the
problem, and how we can fix it. We only discuss proper priors.

Consider the problem of replacing a linear effect of the Townsend deprivation index tpi with
a smooth effect of tpi in the leukemia example in Section 4.3. This is easily implemented by
replacing tpi with f(tpi, model="rw2"). Here, rw2 is a stochastic spline, simply saying that the
second derivative is independent Gaussian noise (Rue & Held 2005, Lindgren & Rue 2008). By
default, we constrain the smooth effect to also sum to zero, so that these two model formulations
are the same in the limit as the precision parameter τ tends to infinity, and a vague Gaussian prior
is used for the linear effect. The question is which prior should be used for τ . An overwhelming
majority of cases in the literature use some kind of a Gamma(a , b) prior for τ , implying that
π (τ ) ∝ τ a−1 exp(−bτ ) for some a , b > 0. This prior is flexible, conjugate with the Gaussian, and
seems like a convenient choice. Since almost everyone else is using it, how wrong can it be?

If we rewind to the point where we replaced the linear effect with a smooth effect, we realize
that we do this because we want a more flexible model than the linear effect, that is, we also want
to capture deviations from the linear effect. Implicitly, if there is a linear effect, we do want to
retrieve that with enough data. Measuring the distance between the straight line and the stochastic
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Figure 7
(a) The Gamma(1, 1) prior on the distance scale. (b) The smoothed effect of covariate tpi using the
exponential prior on the distance scale λ exp(−λ).

spline using the Kullback-Leibler divergence (KLD), we find that KLD ∝ 1/τ meaning that the
(unidirectional) distance is d ∝ √

1/τ . For simplicity, choose a = b = 1 in the Gamma-prior,
then the derived prior for the distance d is

π (d ) ∝ exp(−1/d 2)/d 3. (19)

Figure 7a displays this prior on the distance scale, revealing two surprising features. First, the
mode is approximately d ≈ 0.82, and second, the prior appears to be zero for a range of positive
distances. The second feature is serious, as it simply prevents the spline from getting too similar
to the linear effect. It is clear from Equation 19 that the effect is severe, and in practice, π (d ) ≈ 0
even for positive d . This is an example of what Simpson et al. (2016b) call prior overfitting;
the prior prevents the simpler model to be located, even when it is the true model. Choosing
different parameters in the Gamma prior does not change the overfitting issue. For all a , b > 0,
the corresponding prior for the distance tends to 0 as d → 0. For a (well-behaved) prior to have
π (d = 0) > 0, we need E(τ ) = ∞.

If we are concerned about the behavior of the distance between the more flexible and the
simpler model component, we should define the prior directly on the distance, as proposed by
Simpson et al. (2016b). A prior for the distance should be decaying with the mode at distance
zero. This makes the simpler model central and the point of attraction. The exponential prior is
recommended as a generic choice because it has a constant rate penalization, π (d ) = λ exp(−λd ).
The value of λ could be chosen by calibrating some property of the model component under
consideration. Note that this way of defining the prior is invariant to reparameterizations, as it is
defined on the distance and not for a particular parameterization.

Let us return to the stochastic spline example, assigning the exponential prior to the distance.
The parameter λ can be calibrated by imposing the knowledge that the effect of tpi is not likely
to be above 1 on the linear predictor scale,
..+ f(tpi, model="rw2", scale.model = TRUE,

hyper = list(prec = list(prior="pc.prec", param=c(1, 0.01))))

Here, scale.model is required to ensure that the parameter τ represents the precision, not
just a precision parameter (Sørbye & Rue 2014). The estimated results are given in Figure 7b,
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illustrating the point-wise posterior mean, median, and the 2.5% and 97.5% credibility intervals,
for the effect of tpi on the mean survival time.

Here, we have only briefly addressed the important topic of constructing well-working priors,
and currently we are focusing much activity on this issue to take the development further. In
addition to other plans, we plan to integrate automatic tests for prior sensitivity, following the
work of Roos & Held (2011) and M. Roos et al. (2015). The final goal is to use the above ideas
to construct a joint default prior for LGMs, which can be easily understood and interpreted. A
main issue is how to decompose and control the variance of the linear predictor, an issue we have
not discussed here. For further information about this issue, please see Simpson et al. (2016b) for
the original report that introduces the class of penalized complexity (PC) priors. Some examples
of the application of these priors include disease mapping (Riebler et al. 2016), bivariate meta-
analysis (Guo et al. 2015, Guo & Riebler 2015), age-period-cohort models (Riebler & Held 2016),
Bayesian P-splines (Ventrucci & Rue 2016), structured additive distributional regression (Klein &
Kneib 2016), Gaussian fields in spatial statistics (Fuglstad et al. 2016), modeling monthly maxima
of instantaneous flow (Ferkingstad et al. 2016) and autoregressive processes (Sørbye & Rue 2016).

Interestingly, the framework and ideas behind PC priors are also useful for sensitivity analysis
of model assumptions and developing robust models, but not enough work has yet been done in
this area to go into detail here. Stay tuned!

6. DISCUSSION

We hope we have convinced the reader that the INLA approach to approximate Bayesian inference
for LGMs is a useful addition to the applied statistician’s toolbox; the key components just play
so nicely together, providing a very exact approximation while reducing computational costs
substantially. The key benefit of the INLA approach is that it is central to our long-term goal of
making LGMs a class of models that we (as a community) can use and understand.

Developing, writing, and maintaining the code base for such a large open-source project is a
huge job. Nearly all the R/C/C++ code is written and maintained by F.K. Lindgren (20%) and
H. Rue (80%), and is a result of a substantial amount of work over many years. Many more
have contributed indirectly by challenging the current practice and implementation. The current
version of this project is a result of the cumulative effort of the many users and their willingness to
share, challenge, and question essentially everything. Documentation is something we could and
should improve upon, but the recent book by Blangiardo & Cameletti (2015) does a very good
job.

The current status of the package is good, but we have to account for the fact that the software
has been developed over many years, and is basically the version we used while developing the
methods. Hence, although the software works well, it is less streamlined and less easy to maintain
than it ought to be. We are now at a stage where we know what we want the package to do and
software to be, hence a proper rewrite by skilled people would be a useful project for the society.
If this were to happen, we would be more than happy to share all our knowledge in such a “version
2.0” project.

Another use of R-INLA is to use it purely as computational back end. The generality of R-INLA
results in increased complexity for the user, hence a simplified interface for a restricted set of
models can be useful to improve accessibility for a specific target audience or provide additional
tools that are mainly relevant for these models. Examples of such projects are AnimalINLA (Holand
et al. 2013), ShrinkBayes (Van De Wiel et al. 2013a,b, 2014; Riebler et al. 2014), meta4diag (Guo
& Riebler 2015), BAPC (Riebler & Held 2016), diseasemapping and geostatp (Brown 2015),
and Bivand et al. (2015). Similarly, the excursions package for calculating joint exceedance
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probabilities in GMRFs (Bolin & Lindgren 2015, 2016) includes an interface to analyze LGMs
estimated by R-INLA. Recent work on methodology for filtered spatial point patterns in the context
of distance sampling (Yuan et al. 2016) has initiated the construction of wrapper software for fitting
other complex spatial models such as those resulting from plot sampling data or for point process
models within R-INLA. There is also an interesting line of research using R-INLA to do approximate
inference on a submodel within a larger model; the reader is directed to Guihenneuc-Jouyaux &
Rousseau (2005) for a theoretical justification and Li et al. (2012) for an early application of this
idea. One particular problem is how to handle missing data in cases where the joint model is not
an LGM.

Please visit us at http://www.r-inla.org!
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Perú. Biometrics 71:208–17
Riebler A, Held L. 2016. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with

integrated nested Laplace approximations. Biometrical J. In press

www.annualreviews.org • Bayesian Computing with INLA 419

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

17
.4

:3
95

-4
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
R

ic
e 

U
ni

ve
rs

ity
 o

n 
03

/2
2/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ST04CH18-Rue ARI 8 February 2017 10:5

Riebler A, Held L, Rue H. 2012. Estimation and extrapolation of time trends in registry data—borrowing
strength from related populations. Ann. Appl. Stat. 6:304–33

Riebler A, Robinson M, van de Wiel M. 2014. Analysis of next generation sequencing data using integrated
nested Laplace approximation (INLA). Statistical Analysis of Next Generation Sequencing Data, ed. S Datta,
D Nettleton, pp. 75–91. New York: Springer

Riebler A, Sørbye SH, Simpson D, Rue H. 2016. An intuitive Bayesian spatial model for disease mapping that
accounts for scaling. Stat. Methods Med. Res. 25:1145–65

Robert CP, Casella G. 1999. Monte Carlo Statistical Methods. New York: Springer-Verlag
Rooney J, Vajda A, Heverin M, Elamin M, Crampsie A, et al. 2015. Spatial cluster analysis of population

amyotrophic lateral sclerosis risk in Ireland. Neurology 84:1537–44
Roos M, Held L. 2011. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian

Anal. 6:259–78
Roos M, Martins TG, Held L, Rue H. 2015. Sensitivity analysis for Bayesian hierarchical models. Bayesian

Anal. 10:321–49
Roos NC, Carvalho AR, Lopes PF, Pennino MG. 2015. Modeling sensitive parrotfish (Labridae: Scarini)

habitats along the Brazilian coast. Mar. Environ. Res. 110:92–100
Rue H, Held L. 2005. Gaussian Markov Random Fields: Theory and Applications. Boca Raton, FL: CRC/Chapman

and Hall
Rue H, Held L. 2010. Markov random fields. In Handbook of Spatial Statistics, ed. A Gelfand, P Diggle, M

Fuentes, P Guttorp, pp. 171–200. Boca Raton, FL: CRC/Chapman and Hall
Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models using inte-

grated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 71:319–92
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